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1. INTRODUCTION 

Manufacturing is an important part of the U.S. economy. The bureau of Labor 

Statistics reports that about 18 million Americans are employed in manufacturing 

(Schloemer 1992). It was estimated that in the late 1980's manufacturing-linked U.S. 

employment fell in the 40 to 50 million range (Schloemer 1992). These figures clearly 

show the importance of manufacturing in the U.S. economy. 

The resulting activity of manufacturing can be classified into either fabrication or 

assembly. All manufacturing firms perform fabrication, assembly, or both. It was 

estimated that in the U.S. about eight million are employed in the area of manufacturing 

processes associated with product assembly (Liu and Sanders 1988). The degree to 

which assembly occurs can vary tremendously. For example, an automobile requires 

considerable more assembly than an office chair. In any case, a great number of products 

produced by manufacturing firms require assembly. Usually, the more complex the 

product the more that assembly becomes a process issue. The importance of assembly is 

clearly illustrated in a recently proposed approach to product design (Nevins and 

Whitney 1989). Nevins and Whitney propose a strategic approach to product design in 

which all concurrent design activities are centered around the determination of assembly 

sequences and the choice of assembly systems. Nevins and Whitney's approach parallels 

the hot topic of design for assembly (DF A). The important point to keep in mind about 

DFA is it recognizes that assembly must be considered at an early stage to insure proper 

product function, quality, and manufacturability. The discussion above clearly points out 

the importance of assembly in manufacturing. 

Assembly systems can be described by classifying their main components. An 

assembly system is generally composed of two main parts: the assembly process ~d the 
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transfer mechanism. The assembly process can be further be divided into the three 

distinct areas listed below (Groover 1987): 

1. Manual single-station assembly 
2. Manual assembly line 
3. Automated assembly 

Manual single-station assembly involves one workplace with one or more workers 

assembling a product. This method is common among low-volume or highly complex 

products. Manual assembly line arrangements have workers in a line each contributing 

something to the assembly of a given product. Automotive assembly is often performed 

using this assembly process. The third assembly process classification, automated 

assembly, is simply assembly performed by automatic equipment. 

The transfer mechanism refers to the means by which assemblies or 

subassemblies are moved to, between, or away from assembly stations. Transfer 

mechanisms are nothing more than material handling systems specifically setup to 

accommodate a given assembly process. These mechanisms can be further classified as 

either manual or automated. Manual transfer requires that workers physically move the 

assemblies or subassemblies from one location to another. Automated transfer is 

accomplished by using some type of conveyor system. Automated transfer mechanisms 

are even further subdivided into continuous, synchronous, or asynchronous. In 

continuous transfer, the worker or the automatic machine must perform the proper 

operation while the assemblies or subassemblies are moving. Synchronous transfer is 

characterized by the flow of assemblies or subassemblies occurring simultaneously at 

specific points in time. Asynchronous transfer occurs when an assembly or subassembly 

is moved as soon as processing is finished. The continuous and synchronous methods 

have maximum production rates equal to the rate of the transfer mechanism. The 

asynchronous method's production rate is not as easily determined. The pr~duction rate 
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in the asynchronous transfer case can be affected by blocking and starving. 

Asynchronous transfer can allow more effective use of the stations where operations 

occur; however, this added flexibility can introduce additional stochastic effects, not 

found in synchronous systems. 

To better understand transfer mechanisms it is necessary to make a distinction 

between open and closed systems. An open system is one in which items travel along 

some path that has definite beginning and ending points. The closed system is analogous 

to a loop: products, carriers, and/or flXtures travel along a closed path. One key feature 

of the closed loop configuration is that the components, subassemblies, or assemblies are 

introduced into the loop at some point and usually exit before traveling the entire 

distance of the closed path. The closed loop configuration is especially useful for 

recirculating fixtures or carriers and also for recirculating items to specific locations in 

the system. 

Analysis of assembly systems has traditionally been divided into three different 

categories. These categories are deterministic models, queueing theory models, and 

simulation. Deterministic modeling involves extensive data collection and analysis: the 

goal is to develop equations which predict the behavior of the system. Queueing theory 

concerns itself with the mathematical analysis of customer-server type relationships. 

Some major issues in queueing theory are service times, queue lengths, and server 

utilization (Gross and Harris 1985). Simulation involves the development of a model 

having similar characteristics as the system of interest Simulation is often performed on 

a computer, allowing the collection of queueing theory type statistics. Deterministic 

modeling works well in the analysis of deterministic systems. However, very few 

systems are actually deterministic. It is possible to use deterministic modeling on 

systems that contain stochastic elements, but model development can be extremely 
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difficult and always produces "case specific" models. Queueing theory is limited in 

application by the complexity of the system of interest. If the system being modeled has 

a simple server-customer relationship, queueing theory can often be applied quickly and 

effectively. Also, queueing theory allows for stochastic elements (e.g. probabilistic 

service and customer arrival times). Obviously, many systems involve much more than 

simple server-customer relationships. Blocking and starving effects are examples of 

factors that make queueing theory analysis somewhat ineffective. Simulation is the most 

effective of the three modeling techniques to properly incorporate the complicated effects 

of blocking and starving in stochastic systems. A major reason for using simulation to 

model complex systems, is to enable the application of optimization techniques. 

Optimization can be thought of as the a process which seeks to improve 

performance towards some optimal point or optimal parameter set (Goldberg 1989). For 

the purposes of this research, optimization implies the search for the set of operating 

parameters which gives the most desirable performance measure value, while not 

violating given system constraints. There are three basic approaches to the search for ~ 

optimum solution: gradient methods, enumerative methods, and random search methods 

(Goldberg 1989). Gradient methods involve fmding minimum or maximum values using 

slopes or derivatives. These methods are reasonably effective for well-behaved functions 

or systems. Well-behaved refers to a continuous function having relatively few local 

minima or maxima. Enumerative methods can simply be described as the evaluation of 

all possible combinations of systems parameters. For some smaller systems this 

approach is feasible; however, in many situations this is not the case. Often, time and 

cost discourage the use of enumerative approaches to optimization. Random sear~:. 

methods, or stochastic search methods, are intended to successfully optimize a parameter 

or set of parameters in a stochastic environment. Random search methods are best 
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represented by techniques such as simulated annealing and the genetic algorithm. These 

techniques are meant to overcome the problems that gradient methods have with 

"hanging up" on local minima or maxima. 

This research investigates the tandem application of a genetic algorithm and a 

gradient method (specifically the stochastic quasigradient method) to the optimization of 

an asynchronous semi-automatic assembly system. The intent of the tandem application 

is to utilize the strengths of each optimization technique. A genetic algorithm will be 

used to identify the interesting features (peaks or valleys) of the response surface and the 

stochastic quasigradient method will investigate the local areas around these features. A 

simulation of an actual assembly system is used to obtain performance measures for 

different sets of input parameters. A detailed description of the assembly system and the 

simulation model is provided in Chapter 3. 
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2. REVIEW OF RELEVANT LITERATURE 

The performance or behavior of many systems is not entirely deterministic. This 

includes systems for manufacturing, assembly, transportation, service, communications, 

etc. Each system has unique aspects which can introduce stochastic elements at different 

stages. Optimizing the performance of systems influenced by the effects of stochastic 

elements has been studied in detail. Methods used for stochastic optimization are also 

commonly referred to as Monte Carlo methods. The first section of this chapter briefly 

describes the different techniques used in the optimization of stochastic systems. The 

next two sections will review the research on genetic algorithms and stochastic 

quasigradient methods respectively. The fourth section will review the work performed 

on the optimization of assembly systems. The fifth section of this chapter will look into 

research on hybrid optimization techniques. The final section is a general summary of 

the literature as related to the research objectives of this thesis. 

2.1. Optimization Techniques for Stochastic Systems 

The following list provides some of the more common methods used in the 

attempt to optimize stochastic systems; however, this list is by no means exhaustive. 

Stochastic optimization techniques include stochastic quasigradient methods (SQG), 

Robbins-Monro Algorithm, Kiefer-Wolfowitz Algorithm. response surface methodology, 

and optimization homotopy. Deterministic optimization techniques that have been 

adapted for use with stochastic problems include genetic algorithms and simulated 

annealing. In their purest form. SQG methods, Robbins-Monro Algorithm, Kiefer­

Wolfowitz Algorithm, and response surface methodology are continuous parameter 

stochastic optimization techniques (Glynn 1986), while genetic algorithms and simulated 

annealing are considered to be discrete parameter deterministic optimization techniques. 
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Optimization homotopy can be used for both discrete and continuous parameter 

optimization; however, it is actaully better for continuous parameter optimization 

because it assumes a continuous "path." All of these continuous parameter optimization 

techniques involve gradient calculations (Glynn 1986). Working descriptions of each of 

these gradient type algorithms are provided by Glynn (1986)" and Gemmill (1988). Even 

though the aforementioned optimization techniques were intended for continuous 

functions, there has been considerable application of these methods to discrete parameter 

or discrete function problems. A later section of this chapter will specifically describe 

the application of SQG to discrete parameter problems. 

As previously mentioned, simulated annealing and genetic algorithms are 

designed for discrete parameter optimization problems. Both of these optimization 

techniques are random search algorithms based on processes found in nature: simulated 

annealing - thermodynamics, genetic algorithms - natural selection (Davis 1987). The 

simulated annealing algorithm recognizes a connection between statistical mechanics and 

combinatorial optimization. This technique was first suggested by Kirkpatrick et al. 

(1983). Statistical mechanics is the study of the behavior of large systems of interacting 

components. This includes the atomic behavior of a solid in thermal eqUilibrium at a 

fmite temperature (Davis 1987). Simulated annealing has been applied to a variety of 

problems including computer design (Kirkpatrick et al. 1983), the traveling salesman 

problem (Bonomi and Lutton 1984), the portfolio problem (Gemmill 1988), and flexible 

manufacturing systems design (Lie 1991). 

Genetic algorithms were formally introduced in Adaptation in Natural and 

Artificial Systems (Holland 1975). These algorithms implement simple genetic 

operations such as reproduction, crossover, and mutation to optimize a given set of 

parameters. Genetic algorithms are based on the "survival of the fittest" concept. In 
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nature, the most fit individuals tend to have a higher survival rate, and thus are larger 

contributors to the gene pool of a given generation. 

Three optimization methods have been given considerably more attention in 

recent research: SQG, simulated annealing, and genetic algorithms. All three of these 

methods hav~ been successfully applied to various problems. As pointed out in the 

introduction, this research involves the tandem application of a random search method 

and a gradient method. Both simulated annealing and the genetic algorithms are random 

search techniques, and SQG is a gradient technique. For the specific assembly system 

being researched, the parameter encoding process for genetic algorithms is more logical 

and intuitive than that of simulated annealing. Therefore, a detailed review of pertinent 

literature involving genetic algorithms and SQG is given. The reader is reminded that 

heuristic versions of both genetic and SQG algorithms are used in this research. If these 

two algorithms are referenced as stochastic optimization techniques, the reference is 

aimed at the heuristic versions. 

2.2. Genetic Algorithms in Optimization 

As discussed previously, genetic algorithms operate in a similar manner to the 

natural selection process. The actual mechanics of the algorithm are presented in chapter 

4. The literature on genetic algorithms can be divided into two distinct categories: 

algorithm development/description and applications. 

2.2.1. Literature on the development and description of genetic algorithms 

Holland (1975) established the application 0; L:o" adaptive characteristics of 

natural systems to artificial systems. For all practical purposes, he can be considered the 

founder of genetic algorithms. The mathematical foundation of genetic algorithms is laid 
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forth in this book. He generalized the concepts of reproduction, crossover, and mutation 

to explain how genetic algorithms provide a robust search in a complex solution space. 

Holland made a significant contribution in the area of stochastic optimization by formally 

introducing genetic algorithms. 

Davis (1987) compiled a set of 13 papers into a book. These papers discuss 

various issues concerning genetic algorithms and simulated annealing. There are several 

relevant articles presented in this book. Davis and Steenstrup (1987) provided a concise 

description of both genetic algorithms and simulated annealing. John Grefenstette (1987) 

discussed the incorporation of problem-specific information into genetic algorithms. He 

suggested that since genetic algorithms are not especially good for fine local searches, 

one could use genetic algorithms to identify "promising" regions, and then invoke a local 

search method to hone in on the optimum solution. This same point was also mentioned 

by Goldberg (1989). Grefenstette used the traveling salesman problem to illustrate 

several heuristic methods for population initialization. Most genetic algorithms begin 

with a random initial population. The research proposed to begin with a "good" initial 

population rather than a completely random one. The "good" initial population is 

selected using cost information. Grefenstette concluded that heuristic information is 

effective, but must be applied with caution to refrain from causing premature 

convergence of the solution. Another significant paper presented in this same book is 

one written by Goldberg (1987) about the behavior of simple genetic algorithms when 

applied to the minimal, deceptive problem (MOP). The MOP is designed to mislead the 

simple genetic algorithm away from the global optimum solution and toward sub-optimal 

solution:.;. C..->ldberg concluded that the simple genetic algorithm converged across a 

wide range of initial parameters; therefore, eluding the distractions presented by the 

MOP. 
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Pettey et al. (1987) suggested the use of a parallel genetic algorithm to improve 

the search time in problems with large populations. In cases when the population is 

small, genetic algorithms can be incorrectly constrained, in terms of the search space. 

Conversely, if the population is overly large, genetic algorithms can take an inordinate 

amount of time to run. The authors present a class of parallel genetic algorithms (PGA) 

to overcome this problem of excessive run time. The Traveling Salesman Problem is 

used as an example to illustrate a PGA. The algorithm described simultaneously 

processes several generations of strings (individuals): to accomplish this, multiprocessor 

technology is utilized. The authors' findings indicate that a PGA can allow for an 

increased population size of a genetic search. 

Richardson et a1. (1989) presented some steps to implementing penalty functions 

in genetic algorithms. Mter a specific problem has been coded into a genetic algorithm, 

it is not uncommon to have particular combinations of bits in the bit string be infeasible 

or illegal. In this penalty scheme, these infeasible or illegal combinations are given a 

substantial penalty. It is explained that historical recommendations for applying penalty 

functions advised using harsh penalties for illegal solutions. By assigning a large penalty 

to the performance measure of the inappropriate solution, it would be forced out of the 

population. Richardson et al. (1989) advised that a well chosen, graded penalty is more 

desirable than harsh penalties. He claimed that these types of penalties preserve the 

information for all strings where harsh penalties do not. This concept will be revisited in 

a later chapter. 

Goldberg (1989) published a textbook addressing the issues of genetic algorithms. 

This text provided a straightforward introduction to the history and operation of genetic 

algorithms. The simple genetic operators such as crossover, reproduction, and mutation 

used in the algorithm are described in detail. Goldberg included a chapter discussing the 
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mathematical foundations, for the theorists. This text also discussed several advanced 

genetic operators including dominance and abeyance. Goldberg also presented several 

knowledge-based techniques that incorporate genetic algorithms: hybridization and 

knowledge-augmentation are two such techniques. Hybrid schemes involve the crossing 

of a genetic algorithm with a problem-specific optimization or search technique. 

Knowledge-augmented techniques involve enhancing a genetic algorithm with some 

"problem-specific" information. Parallel genetic algorithm schemes are also described. 

Parallel genetic algorithms imply that there are several different, but parallel, generations 

operating simultaneously being directed by a single master. This is analogous to a 

computer network having a server. The text also spends considerable time discussing 

genetic algorithms in machine learning. Goldberg's main contribution to genetic 

algorithm research was threefold. First, the text provided Pascal computer code for a 

simple genetic algorithm (SGA). The SGA incorporates the three fundamental genetic 

operators, which are reproduction, crossover, and mutation. Second, Goldberg's text 

thoroughly discussed all aspects of genetic algorithms. Finally, this text compiled a 

nearly exhaustive list of references pertaining to genetic algorithms. 

In 1991, Lawrence Davis published the Handbook o/Genetic Algorithms (Davis 

1991). Davis presented a clear description of genetic algorithms, including history, 

explanation of operation, and variations. These variations discuss hybridization of and 

parameterizing genetic algorithms. Davis dedicated an extensive portion of the text to 

application studies of genetic algorithms. Applications are given for aircraft design, 

neur~ network architecture design, schedule optimization, and robot trajectory 

generation, to name a few. Unlike any previous publications, Da\-~;:: ~.esented the coding 

of genetic algorithms from an object-oriented point of view. In fact, Davis refers to his 

code as the Object-Oriented Genetic Algorithm (OOGA). Overall. this book provides 
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two significant contributions to genetic algorithm research: a large pool of case studies 

involving the application of genetic algorithms and an object-oriented approach to 

genetic algorithms. 

2.2.2. Literature on tlte application of genetic algoritltms 

There are numerous publications describing the application of genetic algorithms 

to theoretical and "real-world" problems. The following section reviews some of the 

applications of genetic algorithms, and mainly concentrates on research relevant to this 

thesis. 

One of the first applications of genetic algorithms was given by AlbertD. Bethke 

at the University of Michigan (Bethke 1978). Bethke used genetic algorithms as function 

optimizers. The traditional way of optimizing some multiple variable stochastic 

functions was to use calculus-based methods. This article proposed the use of genetic 

algorithms instead of these traditional methods. The mechanics of genetic algorithms are 

presented in the context of function optimization. Bethke concluded that the genetic 

algorithms are far less sensitive to noise than gradient or calculus-based methods. This is 

illustrated with an example of fmding the maximum value of a bi-modal objective 

function using a genetic algorithm and a gradient method. 

Davis and Ritter (1987) presented an interesting optimization application using 

genetic algorithms. They used genetic algorithms to optimize the performance of a 

simulated annealing algorithm. The simulated annealing algorithm was used to optimize 

student class schedules. Specifically, Davis and Ritter applied a genetic algorithm to 

optimize the annealirif, ii .... ·ameters. The research concluded that the application of 

genetic algorithms in this capacity was able to find better annealing parameter settings 
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than humans found. Davis and Ritter's contribution lies in their integration of two 

optimization techniques. 

Glover (1987) presented an article on solving a keyboard configuration problem 

using genetic algorithms. The motivation of this research is the configuration difficulties 

brought about when attempting to map keyboards for the Eastern Asian languages. The 

article recognized that it is difficult to apply expert systems to large combinatorial type 

problems. A prototype algorithm meant to illustrate the robustness of the genetic 

algorithm was proposed and tested. Glover concluded by stating that genetic algorithms 

provide a robust search technique when applied with representation and operator 

constraints. 

Cohoon et al. (1988) tested distributed genetic algorithms on the floor plan design 

problem. The floor plan design problem involves determining the optimal arrangement 

of rectangular features in a given area. The particular application given is the placement 

of modules in the VLSI design cycle; the objective of the placement is to minimize the 

wire lengths and the weighted sum of the area. They implemented a distributed genetic 

algorithm using multiple processors (referred to as GAPE). After evolving several fit 

sub-populations, GAPE combines these groups into one large generation. The algorithm 

then proceeds to evolve this single population. Cohoon et al. observed that GAPE 

performed consistently better than applying genetic algorithms in a sequential manner. 

Wellman (1991) applied a simple genetic algorithm to the optimization of buffer 

allocation in a closed-loop asynchronous automatic assembly system. Wellman's 

research focused on the application issues of a simple gene~c algorithm and the 

algorithm's relative performance compared to the work of others. Wellman explored the 

simple genetic algorithm's performance at various settings of the population size, the 

crossover probability, and the mutation probability. The research compares the results of 
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a simple genetic algorithm to the results of Liu and Sanders' (1988) work: Liu and 

Sanders (1988) applied a stochastic quasigradient method to the same problem. Wellman 

found that the simple genetic algorithm did not perfonn well in comparison to Liu and 

Sander's SQG method. The simple genetic algorithm consumed much more computer 

time than the SQG method. However, he showed that the genetic algorithm does 

produce reasonable results. Wellman's work provided two important contributions to 

genetic algorithm research. His fIrst contribution was the application of genetic 

algorithms to the optimization of assembly systems. The other contribution was in the 

comparison of the perfonnance of two different stochastic optimization methods. 

Huntley and Brown (1991) applied a parallel heuristic to the quadratic assignment 

problem. Their algorithm (SAGA) operated by cascading a genetic algorithm and a 

simulated annealing method. The heuristic is considered parallel because of its intended 

implementation using parallel computers or processors. Huntley and Brown developed 

SAGA with the idea of combining decentralized characteristics of genetic algorithms and 

centralized characteristics of simulated annealing methods. A genetic algorithm is used 

to generate populations and then simulated annealing "matures" these populations. 

Huntley and Brown concluded that SAGA perfonned favorably on two standard 

problems found in the related literature. However, SAGA had a longer runtime than 

some less complex algorithms. The main contribution of their work is the cascading 

confIguration of SAGA. They recognized that a genetic algorithm was good for general 

searches and that simulated annealing was better for local searches. 

The applications of genetic algorithms given above only scratch the surface of 

what is available. Some additional applications include control systems, proce"., ':..,sign 

and optimization, neural networks, and machine learning. 
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2.3. Stochastic Quasigradient Methods in Optimization 

Formal stochastic quasigradient (SQG) methods were introduced by Ermoliev 

(1969). They were intended to be applied to stochastic and nonlinear programming 

problems. The fundamental idea of these methods is to implement statistical estimates of 

function values (e.g. gradients) instead of exact function values. The published research 

on SQG is reviewed in two different sections: theoretical development work and 

applications. 

2.3.1. Theoretical development of SQG 

Ermoliev (1969) provided the foundations for SQG in an article discussing 

stochastic gradients and quasi-feyer sequences. This early research considered problems 

of random search and adaptive minimization. Kushner (1974) further developed SQG by 

showing convergence theorems for stochastic approximation methods in finding local 

minima. Gupal and Norkin (1977) presented a stochastic finite-difference method to be 

used in the minimization of discontinuous functions. 

Yuri Ermoliev (1983) presented a paper on using SQG methods for the 

optimization of systems. SQG methods are made for solving complex stochastic 

functions. Ermoliev pointed out that stochastic processes are important due to their 

common existence. He reviewed recent work involving SQG methods. One significant 

issue Ermoliev discussed is use of penalty functions. The minimization of a penalty 

function can be a viable objective function. The author cautioned that this method of 

using a penalty function may not converge under certain conditions. 

Ermoliev and Gaivoronski ~::: ~) presented several SQG methods and their 

respective computer implementations. They clearly illustrated each step required in the 

implementation of a SQG method. Discussion of step size choice and step direction 
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calculations were given. Several suggestions were made for determining step direction 

when observations of the gradient are not available. The methods given were central and 

forward finite difference approximations. They provided some guidelines on choosing 

step sizes at different stages in the optimization process. They recommended the 

application of SQG using an interactive approach. Ermoliev and Gaivoronski also 

described a computer software package to perform SQG (STO). The STO program is 

applied to practical problems; this included examples involving facility location and the 

control law problem. This paper's significant contribution is in the step-by-step 

discussion of the operation and implementation of SQG. Many recent applications of 

SQG cite this article as providing the key explanation of the technique. 

Liu (1987) provided a reasonably thorough history of the development of SQG 

methods. He also provided a detailed description of the mechanics of SQG. Other 

references describing the operation of SQG algorithms include (Tandiono 1991) and 

(Gemmill 1988). A description of the mechanics of SQG methods is provided in Chapter 

4. 

2.3.2. Applications of SQG 

The applications discussed in this section are relevant to this research and the 

industrial engineering field in general. Unlike genetic algorithms, SQG has been applied 

to the optimization of several different assembly systems. Many of the references cited 

below will be discussed from an algorithm viewpoint now, and in a later section will be 

presented from an assembly system viewpoint. 

Liu (1987) implemented SQG to the design optimization of an asynchronous 

automatic assembly system. Liu used the SQG methods as described by Ermoliev and 

Gaivotonski (1984). The research indicated that using forward finite difference methods 
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provided an acceptable alternative to central finite difference methods. Liu pointed out 

several disadvantages of the SQG method. One major weakness of SQG is the difficulty 

in choosing a "good" initial solution set. 

Gemmill (1988) applied SQG to the portfolio problem. His research found that 

SQG tends to converge to local optima instead of global optima; the starting point tends 

to significantly affect the probability of converging to a local optima. Gemmill also 

found the algorithm to converge rather slowly. 

Liu and Sanders (1988) used the SQG method, as described by Ermoliev and 

Gaivoronski (1984), for the performance optimization of an asynchronous flexible 

assembly system. Both starving and blocking effects were introduced into the assembly 

system model. Their research used a queueing network model to set the number of 

pallets and then used an SQG algorithm to determine buffer spacing for optimal system 

throughput. Liu and Sanders' method can be considered a hybrid technique. They 

concluded that their queueing networklSQG algorithm produced reasonable results in a 

difficult area which is serviced by very few techniques. 

Tandiono (1991) presented research involving the optimization of an automatic 

assembly system (AAS) from a cost perspective. She implemented SQG methods to 

optimize a simulation of a given AAS. Tandiono found that by using an objective 

function involving cost, SQG could simultaneously optimize the number of pallets and 

buffer sizes. From the research, she discovered that SQG performance was somewhat 

dependent upon step size choice. A penalty function was integrated into the optimization 

procedure. Discussion warned that the penalty should be severe enough so that 

inappropriate parameter sets will not be accepted as optima. 

Bulgak and Sanders (1991) proposed a technique for the design optimization of 

asynchronous flexible assembly systems with statistical process control and repair. Their 
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algorithm uses a queueing network model to determine the number of pallets needed to 

achieve a desired system throughput, and then applies a SQG method. They also test 

their algorithm using a modified simulated annealing method instead of SQG. Bulgak 

and Sanders concluded that both of their hybrid algorithms worked well in producing 

optimal, or near optimal, design parameters for flexible assembly systems with 

automated SPC and repair. 

2.4. Optimization of Assembly Systems 

This section reviews the literature involving the optimization of assembly 

systems. Various pieces of literature already reviewed in this chapter have mentioned 

assembly systems in the context of stochastic optimization techniques. This section will 

revisit some of those same articles; however, the focus will be on the assembly system 

itself. 

The assembly systems used in the articles discussing stochastic optimization can 

be divided into two general categories: asynchronous automatic assembly systems and 

asynchronous flexible assembly systems. Several researchers used special variations of 

these two general categories, and those will be discussed individually. 

2.4.1. AsYllc/zrOllous automatic assembly systems 

Asynchronous automatic assembly systems can be thought of as either open or 

closed. This review focuses on closed AASs. These systems generally consist of a series 

of workstations in which each perform partial assembly of an object. One key aspect of 

these systems is the in-line or series structure. 'f':":- ~'-,ject being assembled is attached to 

a pallet, and the pallet is transported from station to station via a conveyor system. Each 

station houses some automated assembly process. In many cases, the operation times are 
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considered to be constant and there are assigned jam probabilities at each station. The 

most common decision variables used in the analysis of AASs are number of pallets and 

buffer sizes. Those researchers that have used a basic asynchronous automatic assembly 

system include Kamath and Sanders (1986), Kamath and Sanders (1987), Liu (1987), 

Bulgak and Sanders (1988), Liu and Sanders (1989), Liu and Chiou (1990), Wellman 

(1991), and Tandiono (1991). 

2.4.2. AsYllchrOllOus flexible assembly systems 

Asynchronous flexible assembly systems (AFAS) are manufacturing systems 

designed to provide a high degree of automation and a high degree of flexibility. One 

way to describe AFASs is as a controlled process which can assemble various parts and 

products according to a determined schedule (Andreasen and Ahm 1988). The general 

components of AF ASs are assembly operations, material handling systems and 

components/component types (Lie 1991). The most common decision variables are 

number of assembly cells, buffer spaces, and batch sizes. Individuals having done 

research on the optimization of AFASs include Kamath et al. (1988), Liu and Sanders 

(1989), Bulgak and Sanders (1989), Lie (1991), and Bulgak and Sanders (1991). 

2.4.3. Special cases of asYllchronous assembly systems 

There are two special cases of assembly systems found in the literature that are 

relevant. Bulgak and Sanders (1989, 1991, 1991) implemented an asynchronous 

automatic assembly system which had the unique features of an automatic test station and 

a rep~ :~op. Their system configuration consisted of a double loop arrangement: one 

loop contained all the assembly operations while the other loop contained a repair station. 

Bulgak and Sanders used this system in three separate publications. 
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The other special case of AASs involved a system using a tunnel-gated station 

(Leung and Sanders 1986). Tunnel-gated stations were designed to lift an assembly up 

off of the transfer line. Operations are performed on assemblies in the raised position, 

while other assemblies are allowed to pass underneath. This type of system could be 

used to implement parallel station configurations. 

2.5. Hybrid Stochastic Optimization Methods 

Hybrid optimization algorithms can be thought of as the integration of two 

different algorithms. Hybrid schemes can also be knowledge enhanced algorithms. The 

hybrid designs are created to provide better performance than either of its constituent 

algorithms. The goal of hybridization is to fmd an algorithm that is more robust than 

current techniques (Davis 1991). Both Goldberg (1989) and Davis (1991) suggested 

hybrid schemes, described the rationale behind them, and discussed the general approach 

to their creation. 

As mentioned previously, Davis and Ritter (1987) constructed a hybrid stochastic 

optimization technique for student scheduling. Davis and Ritter described their 

technique as a probabilistic search routine combining the genetic algorithm and simulated 

annealing. Their hybrid technique used simulated annealing to optimize the class 

scheduling problem, while concurrently applying a genetic algorithm to optimize the 

simulated annealing parameters. They determined that their algorithm was more 

successful and faster at student scheduling than the people who currently perform it. 

Davis and Ritter also suggested that their algorithm can be applied to other problems of 

the same type. 

As mentioned earlier, Liu and Sanders (1988) presented a hybrid algorithm to 

optimize the system performance of flexible assembly systems. They used a queueing 
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network model to determine the number of pallets in the system and then applied a SQG 

method to determine the buffer sizes. They referred to their technique as the combined 

Network-SQG method. Liu and Sanders found their algorithm performed reasonably 

well on the complex problem of AFAS optimization. 

Bulgak and Sanders (1991) implemented a two stage algorithm for the stochastic 

optimization of asynchronous flexible assembly systems with SPC and repair. They used 

a queueing network model in the fust stage to predict the number of pallets required to 

meet a desired throughput. The second stage of their hybrid algorithm utilizes a 

stochastic optimization technique to set buffer sizes. Bulgak and Sanders experimented 

with two different stochastic optimization techniques for use in the second stage: SQG 

and simulated annealing. They concluded that both versions of their hybrid algorithm 

worked; however, the SQG version was computationally more efficient than the 

simulated annealing version. It was also found that simulated annealing had more 

potential for application to a wider variety of problem types. 

The last hybrid method discussed in this review is the cascaded algorithm 

proposed by Huntley and Brown (1991). As mentioned before, their heuristic used a 

genetic algorithm cascaded with a simulated annealing algorithm. The genetic algorithm 

is used to create good populations and the simulated annealing procedure is applied to 

mature the populations. Their intention was to implement this algorithm using parallel 

processors. The cascading application of two stochastic optimization techniques, as 

presented by Huntley and Brown, is similar to some of the research in this thesis. 

2.6. Summary of Literature 

Genetic algorithms have been applied to numerous practical and theoretical 

problems. Some researchers found genetic algorithms to be successful in their 
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applications, others did not. In the attempt to find a more robust approach, some 

researchers integrated specific knowledge about their particular problem into a genetic 

algorithm. 

In their purest form, SQO methods are intended for locating optima in a 

continuous solution space. In the search for stochastic optimization techniques, 

researchers found' heuristic ways to apply SQO to discrete or discontinuous solution 

spaces. This opened up the application of SQO methods to a much wider field of 

practical problems. Even with the ability to be applied to discrete parameter problems, 

SQO methods have not been widely applied. 

The research done on the stochastic optimization of assembly systems has been 

almost exclusively focused on asynchronous automatic assembly systems and 

asynchronous flexible assembly systems, with a few variations such as repair loops and 

tunnel-gated stations. The assembly systems described in the literature were theoretical 

rather than actual. However, some system features were based on actual equipment (e.g. 

tunnel-gated stations). 

In the absence of desired performance, researchers developed hybrid stochastic 

optimization algorithms. Hybrid algorithms were created by integrating two 

optimization techniques or augmenting a single technique with problem specific 

knowledge. These algorithms strive to be more robust than their constituent algorithms. 

The research presented in this thesis provides two new contributions to the field 

of stochastic optimization. First, the simulated assembly system is a detailed 

representation of an actual assembly system. This assembly system has parallel 

operations and al~n J..r -; both automatic and manual stations. To the best of our 

knowledge, this is the first research aimed at optimizing an assembly system with both 
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manual and automatic stations. Second, the optimization technique involves the tandem 

application of a genetic algorithm and a SQO method. 
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3. SYSTEM DESCRIPTION 

The assembly system described in this research is an actual system used by Ford 

Refrigeration and Electronics (Connersville, IN) to assemble plate/fin style evaporators. 

Evaporators are a vital component in the climate control system of the automobile. The 

evaporator is a component which is not'readily familiar to most people. Their 

unfamiliarity is due to the fact that when assembled in the automobile, the evaporator is 

completely enclosed in a plastic housing. This housing is located in the rear of the 

engine compartment, usually in close proximity with the fire wall. The evaporator is 

responsible for removing heat from the air used to cool the passenger compartment. 

Refrigerant enters the evaporator in a low pressure liquid state. As the refrigerant passes 

through the platelfin network it picks up heat and changes from a low pressure liquid to a 

low pressure gas. Blowers in the automobile force warm air across the platelfin network. 

The boiling refrigerant removes heat from the warm air, and this air cools the passenger 

compartment (Dwiggins 1978). 

3.1. Description of Actual System 

This assembly system is classified as a palletized asynchronous semi-automated 

build line. A general overhead view is illustrated in Figure 3.1. There are four major 

components to this assembly system: build stations, the vision system, core banding, and 

core unloading. The pallets are designed with fixtures attached to them. The fixtures 

assist the workers in properly assembling evaporators. The network of transport track is 

at a single elevation: all pallets move in the same x-y plane. The complete transport 

network structure is defmed by several connected segments. The conveyor ~p~' .. 'J is 

essentially constant at 10.38 in/sec. This is the average speed of a loaded pallet 

determined by direct observation. The transportation network is arranged in a 
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rectangular configuration, as shown in Figure 3.1. The structure is such that pallets move 

throughout the system in a counterclockwise direction. Pallets move strictly in straight­

line motion, there are no arc type motions. As a pallet is being transported by a 

conveyor, it will eventually reach the end of the current segment. When this occurs, 

pallets are raised by mechanisms referred to in this research as lifts. These lifts transport 

pallets from one conveyor segment to another. Pallets are never rotated: when they tum 

90° comers, the pallets remain oriented in the same direction. Upon completion of 

assembly, the pallet (with attached evaporator core) is released. The pallet moves from 

the build station onto the return track. Once on the return track, the pallet moves towards 

the unload loop. During the pallet's stay on the unload loop, it must visit four different 

automatic stations: vision prealign, vision inspection, bander, and core unload. These 

stations are visited in the order given, without exception. During the first stop, vision 

prealign straightens the assembled evaporator core, readying it for the vision inspection. 

Upon arrival at vision inspection, the evaporator core is compressed. The vision system 

then takes several fIXed perspective snapshots of the core. This station's purpose is to 

identify any problems due to incorrect assembly, damaged components, or missing 

components. The system determines whether the evaporator core is a reject and then 

encodes this information on a programmable chip located on the pallet. The next station 

is banding. The evaporator core is banded only if the vision system accepted it. The 

banding process begins by first compressing the evaporator core and then securing it in 

the compressed form using a pair of metal bands. This compressed form is necessary for 

a joining process used in the next stage of manufacturing. After the banding station, the 

pallets (with assembled evaporator cores) travel to the unload station. There are 

proximity sensors at the unload station which detect the presence of the metal bands. If 

the metal bands are present, a robotic ann removes the evaporator core from the fixtured 
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pallet. If the proximity sensors do not detect metal bands, the evaporator core will 

remain on the pallet. The empty pallets are circulated back to the build stations. The 

pallets containing rejected evaporator cores are sent back to the station in which they 

were assembled. Pallets, both empty and those containing rejected evaporator cores, 

travel back to the build stations via the feed track. The feed track is analogous to a 

multiple-opening gravity feed bin; it is a one-way non-recirculating conveyor. As 

pallets move down the feed track, they may be sent into a build station if needed. 

Otherwise, the pallets continue down the feed track towards build station 6. 

The conveyors in this system are set up using zones. Since pallets are moderately 

heavy, their travel around the system must be regulated to prevent both excess weight in 

concentrated areas and pallet collisions. Zones are established by holding pallets at 

designated stops according to a pre-established set of rules. Another important feature of 

the conveyor system is located at each 90° bend in the track system. When a pallet 

encounters a 90° bend, a lift raises the pallet up and transfers it to the next conveyor 

segment. Zone logic is such that pallets will not collide on a lift. Collision on a lift 

could cause damage to the conveyor system. There are many intersections in the track 

network structure. These intersections are carefully controlled to prevent pallet 

collisions. Most intersections are governed on first-come-first-serve basis, except in the 

case when a rejected evaporator is being routed back to its builder. In this special case, 

the rejected core has priority at intersections. 

3.2. The Simulation Model 

To enable performance analysis of stochastic optimization techniques, a 

simulation model was developed for the system described in section 3.1. It was 

impossible to use the actual evaporator core build system to test the stochastic 
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optimization methods. The simulation was developed using SIMAN, a commercial 

simulation package from Systems Modeling Corporation. Observation of the actual 

system was used to determine system parameters for the simulation model. A 

considerable amount of effort was put into collecting system parameter data. Since all 

necessary information was provided or could be collected, the simulation model 

incorporated as much detail as possible. A modified version of the approach to 

conducting a simulation study, as presented by Law and Kelton (1991), was used to 

create the simulation model. The steps are listed below. 

1. Formulation of problem and objectives. 
2. Clearly define the data to be collected. 
3. Collect system parameter data and validation data. 
4. Building the simulation model. 
5. Verification of the simulation model. 
6. Validation of the simulation model. 

Some of the steps in the above list required several iterations to complete. 

3.2.1. Formulatioll of problem alld objectives 

The objective of this study was to create a simulation model of adequate detail so 

that stochastic optimization techniques could be tested for their effectiveness in setting 

the decision variables at optimum levels. As mentioned earlier, a high level of detail is 

used so the simulation is as representative of the actual system as possible. This 

assembly system has many places where stochastic elements can directly affect 

performance. This makes the system an ideal candidate for the application of stochastic 

optimization methods. It was also at this stage of the study that Ford Refrigeration and 

Electronics provided the authorization to stu~J u~\! system and freely collect any 

necessary data. 
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3.2.2. Clearly define the data to be collected 

The system had to be studied carefully to completely understand all the data that 

needed to be collected. A clear picture of the starting and stopping points of various data 

being collected was essential. The length of each operation is defined by the time the 

pallet stops at the station until the time the pallet is released. The necessary data included 

core building times, vision prealign times, vision system times (both good and rejected 

cores), banding times, core unload times, and conveyor speed. 

3.2.3. Collect system parameter data and validation data 

The data for the system were collected by direct observation using a stopwatch. 

All data were collected and analyzed in seconds. The number of observations for each 

specific parameter varies due to some parameters occurring infrequently. The ultimate 

goal of data collection was to determine the distributions for each of the system 

parameters. The advantages of using distribution· functions for operation times, rather 

than empirical data is twofold: values for the data are not restricted to only those of the 

observations and there are no minimum or maximum values as in empirical distributions 

(Law and Kelton 1991). Having collected large enough samples from which to draw 

conclusions, Kolmogorov-Smirnov tests were then applied to each data set. The tests 

were conducted at an a level of 20% (Mullin 1990). The resulting distributions are 

shown in Table 3.1. 

As illustrated in Table 3.1, there are five different stochastic variables within the 

simulation model and several are found in more than one place. These stochastic 

c!;;;Jents along with starving and blocking effects support the initial decision to model 

the system using simulation. 
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Table 3.1 System time parameter distributions and values (all times in seconds) 
Parameter Distribution Distribution Shift to be Mean 
Description 

New Core Build 

Rejected Core Fix 

Vision Prealign 

Core Banding 
Vision System 
(accepted core) 
Vision System 
(rejected core) 
Accepted Core 

Unload 

Erlang 

Exponential 

Erlang 
Constant 
Erlang 

Uniform 

Constant 

Parameters Added Value 

k = 3, /3= 6.013 

/3= 50.461 

k = 3, /3= 0.111 
Jl= 5.94, s = 0.061 

k = 8, /3= 0.072 

a = 8.21, b = 9.00 

Jl= 4.98, s = 0.090 

49.77 67.81 

18.88 50.46 

3.31 3.64 

5.26 
5.94 
5.84 

8.61 

4.98 

The data needed for validation were not collected at the same time as parameter 

data. This was not a wise choice, but was inescapable due to time and distance 

constraints. The actual data used in the validation of the simulation model will be 

presented in a later section. 

3.2.4. Buildillg the simulation model 

The system is modeled using a terminating, discrete-event simulation. There are 

definite starting and stopping points in time that define the system. These points are 

events such as the start of the shift, the beginning of break periods, the ending of break 

periods, and the ending of the shift. 

The simulation of the system is divided into five general parts: the feed track 

section, the build station section, the return track section, the unload loop section, and the 

daily schedule section. When an entity (pallet) is in the feed track section, it will enter 

one of the build stations. The exact station a given entity will enter is completely 

dependent on the specific situation. Once an entity enters a specific build station section, 

it is delayed to represent the transport time. Eventually the entity will be delayed by 
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either a new build time or a rejected core ~x time. The next stage of the simulation is the 

return track section. This section handles the motion of the entities from the exit of the 

build station section to the beginning of the unload loop section. The return track section 

is analogous to an interstate with several on-ramps where the build stations represent 

these on-ramps. Entities travel out of the return track section into the unload loop 

section. In the unload loop, entities experience a series of delays. Entities are delayed 

for transport time, vision prealign, vision inspection, banding, and unloading. After 

finishing with the unload loop section, entities reenter the feed track section. 

The daily schedule section of the simulation is responsible for causing events to 

occur at specific times during the shift. The entire simulation is based on seconds; 

therefore, the simulated shift is dermed by events occurring at some number of seconds 

from time zero. Time zero is referred to as the start of the shift. The schedule of events 

that the daily schedule section handles, as referenced from time zero, is given in Table 

3.2. 

The simulation model uses basic SIMAN structures to model the evaporator 

assembly system. As mentioned previously, round pallet stops provide holding functions 

Table 3.2 Time of day event schedule (all times in seconds) 
Event Description Beginning Time Ending Time 

Initialization 0 1,000 
Working 1,000 6,400 

Break time 6,400 7,180 
Working 7,180 13,600 

Break time 13,600 14,380 
Working 14,380 18,700 

Lunch time 18,700 20,800 
Working 20,800 26,200 

Break time 26,200 26,980 
Working 26,980 29,500 

Initialization for next 29,500 31,500 
shift 
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to establish the zoning effect. These round pallet stops are modeled using Queue blocks. 

Each build station, the vision prealign, the vision inspection system, the bander, and the 

core unload are all represented in the simulation model as resources. To simulate a pallet 

entering the station, an entity must seize the specific resource. Delay statements are used 

to represent travel times and process times. Branch statements perform the transfer of 

control from section to section. The lifts are treated as variables. The variable for a 

specific lift must be equal to zero in order for an entity to access it. Scan statements 

establish the control logic. In order to induce the occurrence of an event at a particular 

time, a dummy entity is created, used to set some variables, and then disposed. This is 

the process that takes place to indicate to the simulated system that the workers are on 

break. As shown, the simulation is constructed of basic SIMAN blocks and elements. 

The simulation model was built using a direct approach. This meant trying create 

a one-to-one correspondence between the actual system and the simulation model. This 

approach seemed to be the most effective and efficient method at the outset of the 

research; however, it proved to be quite inefficient in terms of computer run time. There 

are a number of Scan statements used in the simulation. Scan statements combined with 

the large size of the model, causes the run time to be longer than desired. In the worst 

case, one replication (the simulation of one shift) can take about 4.5 minutes on a 

486DX33 class microcomputer. 

3.2.5. Verification of the simulation model 

The process of verifying the model was much easier, since the simulation was 

developed in SC:-'~; :-';".s. By developing the simulation in sections, entity flow could be 

easily followed. The key to proper model verification is to have a complete 

understanding of the system being simulated. The evaporator assembly system being 
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simulated in this research is governed by an extensive array of ladder logic. 

Understanding the resultant series of events when an entity encounters a busy or a vacant 

intersection is absolutely necessary. Verification of the simulation model also requires 

that the programmer become quite familiar with the simulation language. 

3.2.6. Validation of tlte simulation model 

In the ideal case, the data used for validation of the simulation model are 

collected simultaneously with the system parameter data. As mentioned before, this was 

not possible. Therefore, the validation data were collected about 10 months after that of 

system parameters. To compare the simulation of the evaporator assembly system with 

the actual system, several different statistics were utilized. The statistics used in the 

verification data by no means represent all possibilities; these statistics were perceived as 

being important to this particular system. Table 3.3 summarizes the results of model 

validation. The entries in Table 3.3 describing the system configurations are interpreted 

as (st6,st5,st4,st3,st2,stl,np) where st variables refer to the status of the respective build 

stations and np stands for the number of pallets. A st variable of 1 means that a worker is 

assembling evaporator cores at that station, and a st value of 0 implies to no worker is 

present. 

Note in the Table 3.3 that production rate (on a shift basis) is not used as a 

validation statistic. The workers building evaporator cores have standards to meet. Once 

a given worker meets his or her standard, they will stop building evaporator cores. This 

feature was not included in the simulation. The simulation portrays the workers building 

cores until the end of the shift. 

As shown in Table 3.3, the mean value from the simulation is contained within 

the 95% confidence interval for six out the nine statistics. However, items 5, 6, and 8 
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Table 3.3 Model validation data (all times in seconds) 
Statistic System Config. Simulation 

Mean 
Pallet cycle time (1,1,1,1,0,0,22) 16.94 
Pallet cycle time (0,1,1,1,0,0,19) 22.79 
Pallet cycle time (0,1,1,1,0,0,19) 22.79 
Pallet cycle time for station 3 300.38 

only 
Pallet cycle time for station 4 334.94 

only 
Pallet cycle time for station 5 376.56 

only 
Pallet cycle time for station 6 526.16 

only 
Pallet travel time in unload loop 85.28 
Pallet cycle time (1,1,1,1,0,0,22) 372.66 

(for specific 
pallets) 

95% CI for Actual 
Data 

(14.01,17.13) 
(18.63,23.89) 
(19.42,23.72) 

( 175.48,494.08) 

(254.45,311.75) 

(274.04,320.38) 

(372.96,557.50) 

(83.29,83.77) 
(366.2,404.74) 

show that the simulated mean is not contained within the 95% confidence interval of the 

actual validation data. There are several explanations for this problem. One possible 

explanation could be that the validation data were collected 10 months after the system 

parameter data. During validation data collection time, no major changes were observed. 

However, to be sure operation times did not change over the 10 month gap, the system 

parameters would have to be retimed. This is the exact reason why validation data 

should be collected at the same time as system parameter data. Another possible 

explanation for the differences is the fact that the workers during the two data collection 

times were completely different people. The average evaporator build time could have 

changed because of this. 

Due to time constraints, the validation data were collected in a small period of 

time. This could provide another possible explanation for the difference between 

statistics. Since the time period in which the validation data were collected was very 
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small, it is quite possible that the validation data is not representative of what one would 

observe over the course of an entire shift One last possible reason for differences could 

be attributed to problems in the simulation model; however, the model was checked 

thoroughly and was operating as intended. 

Table 3.3. also indicates a tendency for the mean simulation data to be larger than 

the mean validation data. This tendency is probably explained by the previously . 

mentioned 10 month data collection gap. It could also be explained by the possibility of 

the actual system having faster conveyor speeds than the simulation. In any case, the 

validation data shows that the simulation model is representative enough to make 

analysis and optimization meaningful. 

3.3. Jam and Reject Rates 

Station jams were experienced during the data collection phase of the simulation 

study. Jams occurred at both the build stations and the automatic stations. These jam 

rates were not included in the simulation because they were found to be very low. Also, 

since the system has actual people tending the machines, the jam time was short and 

insignificant. If a jam occurs at a build station, the resident worker almost immediately 

rectifies the problem. If a jam occurs at an automatic station, there is also a worker 

assigned to take care of it Jams at automatic stations do not cause any significant 

blocking or starving effects if they are corrected in a timely manner. 

The reject rate of the vision system was observed during both the primary and the 

validation data collection periods. After collection of some data and discussions with the 

process engineers, the reject i;':":' was set at 1.5%. The reject rate is an important factor 

to keep in mind due to the effect it can have on starvation; however, since the reject rate 

was somewhat controllable, this factor was not used as a decision variable. 
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3.4. Simulation Output 

In order to measure the performance of different combinations of decision 

variables, it is necessary to define the quantity to be obtained from the simulation model; 

this quantity is the number of good evaporator cores assembled in a given shift. Along 

with this value, it is also necessary to keep record of the associated combination of 

decision variables. These decision variables include the station configuration and the 

number of pallets. A single number between I and 63, inclusive, is used to represent the 

station configuration. The set of build stations is viewed as a six element array, 0 

meaning no worker is present and 1 meaning the station is occupied by a worker. The 

single number representing the station configuration is simply the decimal equivalent of 

the binary number created by the six element array. The simulation outputs the 

following three pieces of information to a file: the quantity of good evaporator cores 

produced, the station configuration, and the number of pallets. 

Up to this point, the issue of performance measures has been avoided. This 

research looks at two different measures for relative performance evaluation. Complete 

discussions of these performance measures are given in Chapter 4. 
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4. DESCRIPTION OF ALGORITHMS 

This chapter contains descriptions of genetic algorithms and stochastic 

quasigradient methods. General descriptions of both algorithms are given followed by 

explanations of each of the modified versions tested in this research. Related issues 

including performance measures and penalty function are also discussed. 

4.1. The Genetic Algorithm 

As mentioned previously, genetic algorithms are patterned after the process of 

natural selection. Natural selection is a process that ocurrs in natural systems by which 

the fittest individuals dominate in the mating pools. This tends to perpetuate 

characteristics of the more fit individuals. This chapter descibes the basic operations that 

make up genetic algorithms and how a simple genetic algorithm was used to optimize the 

decision parameters of the simulated evaporator core build system in chapter 3. The 

genetic algorithm described in this research is a modified version of that presented in 

Goldberg's (1989) text. 

4.1.1. A general description of gelletic algorithms 

In order to describe how the genetic algorithm works, it is first necessary to 

present the basic components. The genetic algorithm operates on a population. This 

population is composed of a number of individuals. These individuals are simply bit 

arrays or bit strings (arrays or strings of Os and Is). The decision variables of the system 

or function being optimized are coded into these bit strings. Each bit string represents a 

certain set of values for the decision variables. These sets of decision variables eac~ h,,";! 

some associated performance measure. These performance measures are used to evaluate 

the fitness of the associated bit string. 
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The genetic algorithm described in this research uses three basic operators: 

reproduction, crossover, ~d mutation. These operators process the population of 

individuals from generation to generation. The reproduction operator creates a mating 

pool of individuals by copying existing strings according their fitness value. Each string 

has a fitness value and each generation has a total fitness or sumfitness value. The fitness 

value of an individual string divided by the sumfitness gives the probability of that string 

being part of the mating pool for the next generation (for maximization problems). A 

similar procedure is used to calculate the probability of a string being part of the mating 

pool for minimization problems. It is this weighting scheme that allows the more fit 

individuals to be dominant contributors to the mating pool. Once the mating pool has 

been created, the crossover operator is applied. There are two steps to the crossover 

operation. First, random pairs of individuals in the mating pool are mated. This mating 

involves the possibility of crossover andlor mutation. Crossover and mutation occur with 

some specified probability. Second, if crossover is slated to occur, a crossover site is 

randomly chosen. For example, suppose we have two strings being mated and crossover 

is to occur between bits 4 and 5. 

string 1: 01001101011 => 0100101100 

Crossover 

string 2: 0111110 11 00 => 011110 10 11 

This clearly shows how the respective strings retain their original identity up to the point 

of the crossover site and then they exchange the remaining portions of their strings with 

each other. If crossover is not to occur, the parents are copied into the next generation. 

The mutation operator is applied to each bit of each string. Mutation is simply the 

toggling of a bit according to the mutation probability. Through these three operators, 

generations of individuals are processed. This idea is summarized in Figure 4.1. 
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Generation Reproduction 
> 

Generation 
x x+l 

Crossover 
Population > Population 

Mutation 
Size n > Size n 

Figure 4.1 The operation of the genetic algorithm (Goldberg 1989) 

The fmal generation should contain more fit individuals on average than the initial 

generation. The formal mathematical foundations for the genetic algorithm are presented 

by Holland (1975). Goldberg (1989) also presents these foundations, but in a more 

example oriented manner. 

4.1.2. The genetic algorithm in this research 

The genetic algorithm implemented for the optimization of the evaporator 

assembly system uses the three basic operators discussed previously. The main 

differences between the genetic algorithm used in this research and the simple genetic 

algorithm presented by Goldberg (1989) is the handling of the individual structure and 

the determination of the performance measure. The algorithms used in this research were 

written in C language and Goldberg used PASCAL to implement his simple genetic 

algorithm. This made it necessary to change the specific structuring of the code. 

Through this restructuring, Goldberg's simple genetic algorithm was transformed to 

specifically accommodate the system being studied in this research. 

The decision variables used in this research encode into the genetic algorithm 

very well. These decision variables are the number of workers and the number of pallets. 

The number of workers must be identified by both qu~tity and distribution. Knowledge 

of only the number of workers is insufficient; the placement of those workers is also 
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important. Recall that the evaporator assembly system contains six build stations. Each 

build station either contains zero or one worker. Describing the number of work~rs and 

their respective placements naturally encodes into bit string form. The number of pallets 

are also easily encoded into a bit string form. The decimal value of the number of pallets 

is simply converted to its binary equivalent. The maximum number of pallets in the 

system varies according to the placement and number of workers. The overall maximum 

value is 31 pallets; this can be encoded by a bit string of of size 5. Throughout this 

research, the number and placement of workers will be referred to as the station 

configuration. An individual in this research is defined by a specific station 

configuration number and a specific number of pallets. Since the individuals must be in 

the form of a bit string, the separate bit strings formed from the encoded decision 

variables are concatenated. For example, suppose there are four workers assembling 

evaporators: one at station 6, one at station 5, .one at station 3, and one at station 1. Also 

suppose there are 17 pallets. The individual would appear as follows: 

Encoded Station Configuration: 110101 

Encoded Number of Pallets: 10001 

Associated Individual: 110 1 0 11000 1 

The algorithm also keeps track of the performance measure for each individual. 

Discussion of the performance measures used to evaluate individuals is presented in a 

later section. 

In order to apply the genetic algorithm, some initial population of individuals is 

required. There are different ways of obtaining this group, some authors suggest 

l.u.':"mly creating the initial generation, while others recommend that some insight be 

used. The choice of this research is to select an initial population (generation 0) 

randomly, to purposely deny any special advantage to the genetic algorithm. 
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From the description in chapter 3, it can be observed that this assembly system 

has a finite set of decision variables. The nature of the decision variable encoding 

process can cause problems in terms of remaining inside of the feasible region. As the 

genetic algorithm operates it is probable that some individual will be introduced into the 

population that is not in the feasible decision variable space. This problem is alleviated 

by using a penalty function. A later section in this chapter is dedicated specifically to the 

discussion of the penalty functions used. 

4.2. Stochastic Quasigradient Methods (SQG) 

SQG methods use statistical estimates of the gradient of a function to determine 

which direction to step in the solution space. Using an SQG method involves objective 

function formulation, choice of step direction, choice of step size, a projection operation, 

and some stopping criteria. 

4.2.1. Objective function formulation 

The objective function should accurately reflect the performance of the system 

being studied. Since performance measures are discussed in a later section, we will 

simply refer to this quantity as PM for purposes of this description. The objective 

function for the optimization of the evaporator assembly decision variables can be shown 

as follows: 

min: PM = F(x) ; x in X 

F(x) = Erof(x, 00) 

The variable x above represents a vector of decision variables constrained within set x. 
The 0) denotes a random variable belonging to some space. This randomness can enter 

the problem through blocking effects, starving effects, evaporator build times, and vision 
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inspection times. For a given set of decision variables, simulation can provide the 

expected value of F(x}. Based on this expected value and a step direction, the value of x 

can be forced towards an optimal solution. 

4.2.2. The operatioll of SQG 

The stochastic quasigradient algorithm progresses from one feasible point to 

another using the following algorithm: 

xs+ I = 7rs (xs - Ps us) 

where Xs is the current approximation to the optimal solution, Ps is a step size, and Us is 

the current step direction. The 1ts symbol simply represents a projection operator. This 

insures when the algorithm steps, it does not step out of bounds; it keeps the solution in 

the feasible region. The general procedure for applying this projection operation is to 

project the solution back into the feasible region when an out of bounds condition is 

encountered. The closest feasible solution is usually chosen. The final variable in the 

sQa algorithm equation, xs+l, is the next approximation of the optimal solution. To 

apply this.algorithm we need to choose a step size, a step direction, and a stopping 

criteria. 

There are three approaches in the choice of step size: flXed, variable, and 

modified. The flXed step size method should be applied with caution. If the initial 

solution is not very close to the optimal solution, a flXed step size can restrict the sQa 

algorithm from finding the global optimal. In many cases a sub-optimal or local minima 

will be chosen instead. 

The variable step size method adjusts the step size according to changes in 

solution estimates over some period of time. The dynamic behavior of this method tends 
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to make step sizes large when the current solution is expected to be distant from the 

optimal solution. and small when the optimal solution is expected to be near. 

In the modified step size method. the size of the step mayor may not change 

during a given iteration. The decision to modify the step size is made according to some 

criteria. such as the moving average of the estimated function value (Liu 1987). If the 

step size is to be modified. it is usually decreased by some fixed percentage. 

We can use a statistical estimate of the gradient function F(x) as the step 

direction. This makes 'Us equivalent to Ss such that 

E(;slxl. X2.···. Xs) = Fx(xs) + as = vs· 

In this equation. Ss is a statistical estimate of 'Us and (xs decreases as the number of 

iterations increases. In this equation. 'Us is the stochastic quasigradient of function F(x). 

There are several methods available to estimate the gradient direction. Some of the more 

common methods include finite difference approximations. These approximations come 

in two varieties: forward fmite difference(FFD) and central finite difference(CFD). The 

FFD can be expressed in the following form: 

where s is the iteration number. ()s is the step. COs.i.t and COs.i.2 are stochastic random 

values generated in iteration s. and ei represents unit basis vectors from Rn. The CFD 

can be expressed in the following form: 

By comparing the two finite difference equations. it is observed that the CFD method 

requires twice as many function evaluations as does the FFD method. Depending on how 
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the function evaluations are performed, the extra calculations required for the CPO 

method can significantly increase the computer run time required. 

The final issue involving the application of an SQO algorithm is the stopping 

criteria. Several different schemes for determining the iteration in which to stop the 

algorithm have been proposed. Methods include stopping when the function value 

reaches some prescribed goal, stopping the algorithm when the step size has been 

reduced to a certain value, stopping after a certain number of iterations have occurred, or 

stopping after a certain period of time. 

4.2.3. SQG algorithms used in this research 

This research uses four different versions of the SQO algorithm to optimize the 

simulated evaporator assembly system. The binary nature of the station configuration 

decision variable made encoding difficult. This required the experimentation of several 

different encoding schemes. The forward finite difference (FFD) method is used in each 

of the SQO implementations to determine the gradient direction. A variable step size is 

used for the "number of pallets" decision variable in each heuristic. In these cases, a 

constant reduction multiplier is applied. The step size for other decision variables is 

specific to the particular implementation. All the systems implementing a heuristic form 

of the SQO method are initialized with a randomly chosen set of decision variables. The 

determination of appropriate step sizes, reduction multiplier percentages, and stopping 

criteria for each algorithm are presented in Chapter 5. 

4.2.3.1. SQG 1 SQO 1 is the first version of the stochastic quasi gradient 

method. In this heuristic, there are two decision variables: a station configuration and the 

number of pallets. In each iteration, the decision variables are changed according to the 
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SQG method. The step in the station configuration context is defined as the toggling of a 

randomly chosen station bit; if the gradient determined that toggling the chosen bit is 

beneficial, then it is toggled, otherwise the bit remains the same. The number of pallets 

is an integer between 1 and max_pallets, inclusive. Max_pallets is the maximum number 

of pallets allowed by the given station configuration. The step size for the station 

configuration is constant a one. The step size for the number of pallets is varied 

according to the modified method. 

4.2.3.2. SQG2 SQG2 is the second heuristic implementing the stochastic 

quasigradient method. SQG2 has two decision variables: number of workers and number 

of pallets. The number of workers variable has a fixed step size of one. SQG2 looks at 

adding a worker to the current configuration using FFD. A vacant station from the 

current configuration is randomly chosen. If the gradient indicates that we must step 

forward, that bit is added to the station configuration. If the gradient says we must step 

the opposite direction, a randomly chosen occupied build station is vacated (changed 

from 1 to 0). The number of pallets variable is handled in the usual manner. 

4.2.3.3. SQG3 SQG3 is the third implementation of the stochastic 

quasigradient method. This version also has two decision variables: station configuration 

and number of pallets. In this particular variant the station configuration is converted 

from a 6 digit binary number to the equivalent decimal value. This decimal number is 

then used as a decision variable. In SQG3, both the decimal equivalent of the station 

configuration and the number of pallets have modified step sizes. The 1)ti1I i.1Dg step sizes 

for the decision variables do not have to be the same; however, the reduction multiplier 
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percentages are the same. Both variables are handled in the usual manner by the SQG 

method. 

4.2.3.4. SQG4 This version of the SQG method is used as part of the 

tandem algorithm. This variation uses the SQG method to only determine the number of 

pallets. SQG4 takes sets of decision variables already determined to be good by a 

genetic algorithm (GAl) and specifically looks for solution sets with the same station 

configurations but a different number of pallets. SQG4 is intended to do the fine tuning 

work for the tandem algorithm. SQG4 also uses a modified step size method for the 

number of pallets. 

4.3. The Tandem Algorithm 

The tandem algorithm is a hybrid heuristic employing versions of both the genetic 

algorithm and the SQG method. The tandem algorithm optimizes a set of decision 

variables by first applying the genetic algorithm (GAl) for a specified num.ber of 

generations. Each of the ~ndividuals in the last generation are then used as starting 

configurations for a version of the SQG method (SQG4). SQG4 does not change any of 

the station configurations found by GAl, but searches for more desirable performance 

measure values by optimizing the number of pallets decision variable. Since the problem 

formulation in this research calls for minimization, the idea behind the tandem heuristic 

is to let the genetic algorithm locate the big valleys in the response surface and then 

allow the SQG method to find the bottoms of these Valleys. In this research, the genetic 

algortihm component (GAl) outputs its results into a file where the SQG mtil.ul1U portion 

accesses the data. 
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4.4. Production Data from Simulation 

A simulation of the evaporator assembly system was used to obtain the 

production data needed for the optimization algorithms. The simulation outputs the 

number of accepted evaporator cores produced in a given shift. As mentioned in chapter 

3, the simulation of this assembly system takes quite a while to run due to the size of the 

model and the number of Scan statements used. The initial intention in this research was 

to tie all the optimization programs directly to the simulation model to obtain the 

production information needed to calculate the performance measure. Given all the 

different algorithms and replications tested in this research, it would have have taken 

months of computer time to obtain the results. To overcome this problem, the simulation 

program was run for 5 replications of every possible combination of station 

configurations and number of pallets. There are 1551 different combinations. This task 

took about 180 hours of 486DX33 computer run time. The results from all these 

combinations were placed into a single data me. This data me contains 1551 lines, one 

for each possible combination. Each line contains five "good cores produced" values, a 

station configuration number, and the number of pallets. This complete set of data was 

collapsed into two different meso SIMA VG.DAT contains 1551 lines of information, but 

only 3 values per line: the average of the 5 replicates, the station configuration number, 

and the number of pallets. The other collapsed data me, SIMNORM.DAT, contains 

1551 lines with 4 pieces of information on each line: the average value of the 5 

replicates, the standard deviation of the 5 replicates, the station configuration, and the 

number of pallets. The me SIMNORM.DAT is used in place of actually linking the 

simulation program with the OpUlUl.t.ation programs. When an optimization algorithm 

needs a production value for a specific station configuration, it simply accesses 

SIMNORM.DAT and obtains the associated average production value and the standard 
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deviation. The optimization program then generates a normal random variate using this 

mean and standard deviation. 

This method of using data from a file as opposed to running the simulation model 

each time production data is needed, allowed for expedient testing of numerous 

algorithms and multiple replications. The standard deviations for the production value, 

within a given station configuration and a given number of pallets, were relatively small. 

Only 5 replications of production values were collected for each configuration; however, 

they tended to be consistent 

4.5. Performance Measures 

This research compares several different heuristics intended to optimize the 

decision variables of the evaporator assembly system. To make these comparisons, 

measures of performance were defined. Two different measures of performance were 

investigated for possible comparison use. These two measures will be referred to as 

performance measure 1 (pml) and performance measure 2 (pm2). Pml is defined by the 

following: 

1 
(op_rate)(hrsl shift) (number of builders) 

pm = 
production value 

where op_rate is the average hourly wage of the operator, hrs/shijt is fixed at 8, the 

number of builders is as described, and the production value is the number of good cores 

produced in the shift Pml values were viewed for the 1551 line data set The response 

surface produced was rather flat and uninteresting. To make the response surface more 

interesting, pm2 was created. To determine pm2, we must first define some other 

quantities. Pm2 is based on a required production rate, referred to as req. This was set at 

1368 evaporator cores. This is about four times the standard for one builder. This 
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required value can be easily adjusted according to production needs. We use req to 

define the requirement ratio rr as follows: 

production value 
rr= . 

req 

We must also define a penalty cost to production values above and below req. 

Underproduction and overproduction are penalized at different rates. The penalty is 

defined as follows: 

. {if rr S I penalty = (upc1(req- prod) I prod 
penalty = 

else penalty = (upc2(prod-req»I prod 

where upc1 is the unit penalty cost for underproduction and upc2 is the unit cost for 

overproduction. Given these quantities, pm2 is defined as the following: 

pm2 = pml + penalty. 

The two parameters, upcl and upc2, can be adjusted to scale the terrain of the 

response surface. Penalizing for underproduction and overproduction makes sense from 

a manufacturing standpoint. Underproduction can impede the assembly of automobiles 

while overproduction must occupy valuable floor space. Since overproduction must be 

stored as work-in-process, it runs the chance of being damaged during the extra handling 

involved. 

As mentioned before, the response surface created by using pm I is basically flat. 

There are too many vastly different solutions that have similar performance measures. 

This would make it very difficult to judge the performance of the optimzation heuristics; 

therefore, only pm2 was used for comparison purposes. 
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4.6. Penalty Functions 

In the discussion of genetic algorithms and SQG methods, the notion of some 

solution sets being out of bounds was mentioned. This condition can occur when there 

are zero workers or too many pallets. These conditions are very undesirable. To insure 

that these infeasible solutions do not remain in the solution set, their respective 

performance measures are purposely inflated. The penalty function causes the 

performance measure value of the infeasible solution to be 100 to 1000 times larger than 

average feasible pm values. This drives these infeasible solutions out of the solution set. 
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5. RESULTS FROM ALGORITHM COMPARISONS 

This chapter presents the results from the comparison of the five heuristics 

described in Chapter 4. Before comparing, it was necessary to choose proper operating 

parameter settings for each of the algorithms. The determination of the best parameter 

settings was accomplished using design of experiments techniques. The concept of 

replication arises throughout the this section; five replications simply means that the 

algorithm was run five times with a different random number seed for each run. 

5.1. Setting Algorithm Parameters 

Each of the algorithms have a specific set of operating parameters that need to be 

determined prior to algorithm comparisons. The parameters are set using factorial and 

single factor designed experiments. Throughout all the experiments, an alpha (ex) level 

of .05 is used. The SIMA VO.DAT was the data me used to set all the operating 

parameters. The reason behind this is that the response surface for this data me is more 

stable than that of SIMNORM.DAT; however, the general shape of the two response 

surfaces should be the same. The performance measure pm2 is used for setting all 

operating parameters. The underproduction and overproduction unit costs were 1.0 and 

0.25, respectively. 

Each of the SQG based heuristics require several operating parameters. One of 

those parameters is the stopping criteria In this research, the stopping criteria will be 

some fIXed number of iterations. Therefore, every SQO based algorithm will need to 

have a designated stopping iteration. 
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5.1.1. DetermiIJiIJg the GA's operatilJg parameters 

To run the genetic algorithm we must determine four different operating 

parameters: crossover probability, mutation probability, population size, and run length. 

Some previous research indicated values for the first three of these parameters. Goldberg 

(1989) provided results from a function optimization problem which suggested that the 

crossover probability be set relatively high, the mutation probability be set low (inversely 

proportional to the population size), and use a moderate population size. The actual 

settings proposed by Goldberg were as follows: 

crossover probability: 0.6 

mutation probability : 0.02 
population size : 30 

Wellman (1991) tested several different combinations of these three parameters. Recall 

that Wellman used a genetic algorithm to optimize the decision variables of an 

asynchronous automatic assembly system. Wellman recommended the following set of 

operating parameters: 

crossover probability: 0.6 or 0.8 

mutation probability: 0.001 or 0.005 

popUlation size : 30 

Since both authors mentioned had different systems they were optimizing, it was 

necessary to test different GA parameters for use with the simulated evaporator assembly 

system. Two separate experiments were performed. The first experiment was a 33 

factorial experiment and was used to test the crossover probability, the mutation 

probability, and the population size. This first test implemented a run length of 10 

generations. The results are given in Table 5.1. Table 5.1 shows that there is' only one 

significant factor, and that is the population size. With this result, a single factor 
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Table 5.1 GA parameter factorial experiment results 

Parameter Levels Tested Fo F . (a =.05) ent 

(A) Crossover Prob. 0.4, 0.6, 0.8 0.23 3.35 

(B) Mutation Prob. 0.01,0.02,0.03 1.38 3.35 

(C) Population Size 30,50,70 40.76 3.35 

AxB interaction 0.78 2.73 

AxC interaction 0.14 2.73 

BxC interaction 1.38 2.73 

ABC interaction 0.73 2.31 

Experimental Conditions: 

1. Two replicates for each combination. 
2. Response = sum of top 20 pm2's in generation 10. 

experiment was perfonned to explicitly test different population sizes. The crossover 

probability and the mutation probability were set at 0.6 and 0.02, respectively. Table 5.2 

provides the ANDV A results for the population size experiment. 

The results in Table 5.2 show that the population size has a significant effect on 

the response in the experiment. To select a specific population size, we must first 

compare several different sizes. Figure 5.1 provides the population size averages for 

different levels. From this figure it can be seen that the average response ranges from 

about 7.41 to 6.96. There appears to be an approximate inverse relationship between the 

population size and the response value. Also, the chart shows a defmite drop in average 

response up to a population size of 50, and then it tends to level off. The appropriate 

method of choosing a population size is to compare treatment levels using a test such as a 

Scheffe' test, a Least Significant Difference (LSD) test, or a Bonferroni test. The LSD 

method is too risky because of the possibility of making a Type I error. There are 
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Table 5.2 ANDV A summary from population size experiment 

Source of Variation Levels Tested 

Population size 30, 40, 50, 60, 70, 80, 90, 100 

Experimental Conditions: 

1. Five replicates for each combination. 
2. Response = sum of top 20 pm2's in generation 10. 

7.5 

R 7.4 
e 
s 7.3 

p 7.2 
o 
n 7.1 
s 
e 7 

30 40 

Population Size vs. Average Response 

50 60 70 80 

Population Size 

Fo 
7.27 

90 

Figure 5.1 Population size vs. average response 

F . (a =.05) 
enl 

2.31 

100 

k(k-l) 12 different pair-wise comparisons, where k is the number of treatments. Figure 

5.1 contains 8 different treatments which translates to 28 existing comparisons. If an (X 

level of .05 is used for each of the 28 comparisons, it is almost guaranteed that a Type I 

error will occur. Both the Scheffe' and Bonferroni tests are designed to overcome this 

problem. We will use the Bonferroni test whenever treatment levels are being compared. 

The Bonferroni test is essentially an LSD test with an (X level adjusted for the number of 

comparisons. 
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Using a Bonferroni test, the 8 different population sizes were compared. Figure 

5.2 presents the significance groupings for these population sizes. The reader is 

reminded that the objective of this research is to minimize the performance measure. 

Figure 5.2 clearly illustrates that population sizes of 30 are significantly different than 

sizes of 50, 60, 70, 80, 90, and 100. A population of 40 is not significantly different than 

any of the other sizes. With the given objective function being a minimization problem, 

population sizes of 50, 60, 70, 80, 90, and 100 provide the best performance of those 

tested. 

30 50,60,70,80,90,100 

40 

Decreasing PM Valne 

Figure 5.2 Significance groupings for population sizes 

The final operating parameter for the genetic algorithm is the number of 

generations. This parameter was determined by using a single factor experiment testing 

the following levels: 5, 10, 15, 20, and 25 generations. The results from ANDY A are 

provided in Table 5.3. 

Table 5.3 shows that the levels of the number of generations tested were not 

significantly different To get a better picture of how the number of generations run 

using the genetic algorithm affects the average v~ue of the 20 best performance 

measures, a plot was created. Figure 5.3 is a plot of the average performance measure 

versus the number of generations run. From this figure, we see that average response is 

rather high for the first three generations, but levels off after that. This graph shows why 
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Table 5.3 ANOV A summary from run length experiment 

Source of Variation Levels Tested Fo 
Number of generations 5, 10, 15, 20, 25 0.93 

Experimental Conditions: 
1. Five replicates for each combination. 
2. Response = average of top 20 pm2's. 

Number of Generations vs. Average of top 20 PM2's 

0.467 
R 
e 0.447 

s 0.427 
P 
o 0.407 
n 
s 0.387 

e 0.367 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 

Number of Generations 

Figure 5.3 Number of generations vs. average response 

F . (a =.05) 
enl 

2.87 

the ANOV A results in Table 5.3 indicated that the number of generations did not have a 

significant effect on the response. Since the number of generations of 10 is well into the 

level response area, but not so large that it takes an unreasonable amount of time to run 

in our experiments, it was chosen as the parameter setting. 

5.1.2. Determinillg SQGl's operatillg parameters 

There are three different operating parameters that need to be set to run SQG 1: 

reduction multiplier percentage, initial pallet step size, and stopping iteration. There 
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were not any clear recommendations from previous work to assist in choosing these 

parameters. To check different levels of the operating parameters a 33 factorial 

experiment was used. The results from this experiment are given in Table 5.4. 

This experiment indicated that the stopping iteration is the only significant factor. To 

Table 5.4 SQG 1 operating parameter experiment results 

Parameter Levels Tested Fo F . (a=.05) em 

(A) Reduction % 75%, 85%, 95% 2.79 3.35 

(B) !nit Pallet Step Size 1, 8, 15 2.20 3.35 

(C) Stopping Iteration 10,20,30 22.73 3.35 

AxB interaction 1.01 2.73 

AxC interaction 1.57 2.73 

BxC interaction 0.90 2.73 

ABC interaction 0.59 2.31 

Experimental Conditions: 

1. Two replicates for each combination. 
2. Response = optimal value in the last iteration. 

determine which stopping iteration size to use, we must perform an additional 

experiment focusing only on this parameter. To test various levels of the stopping 

iteration parameter, it is necessary to fix the reduction multiplier percentage and the 

initial pallet step size. The reduction multiplier percentage and the initial pallet step size 

were set at 95% and 8, respectively. Both of these levels were chosen because they had 

the lowest totals for their rr.s':lprtive variables. The results from this single factor 

experiment are displayed in Table 5.5. The results prove that the stopping iteration has a 

significant effect on the response. The next step was to see which levels of the stopping 
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iteration provide the most desirable effect. This can be accomplished by using a 

Bonferroni test. The results of the Bonferroni test performed on the stopping iteration 

variable are pictured in Figure 5.4. Figure 5.4 indicates that the there are two significant 

groups of stopping iterations: 5 and the others. This figure shows that choosing a 

stopping iteration of 10, 15, 20, 25, or 30 is better than choosing 5. 

Table 5.5 ANOV A summary for stopping iteration experiment 

Source of Variation Levels Tested Fo F . (a =.05) 
enl 

Stopping iteration 5,10,15,20,25,30 5.89 2.62 

Experimental Conditions: 

1. Five replicates for each combination. 
2. Response = optimal value in the last iteration. 

5 10,15,20,25,30 

Decreasing PM Value 

Figure 5.4 Significance groupings for stopping iterations 

5.1.3. Determillillg SQG2's operatillg parameters 

As in the case of SQG 1, there are also three operating parameters that need to be 

set before SQG2 can be applied to the optimization of the simulated evaporator assembly 

system. These factors are reduction multiplier percentage, initial pallet step size, and 

number of iterations. As before, a 33 factorial experiment was used to determine how to 

set these three operating parameters. The results of this experiment are provided in Table 

5.6. The outcome of this experiment shows that given the levels of the factors tested, 
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none of the main effects or any interactions have a significant effect on the response. 

Since no factors were found to be significant, the levels of the factors were set by 

choosing the ones which supplied the minimum totals in the ANOV A. These settings 

were 75% for the reduction multiplier percentage, 8 for the initial pallet step size, and 20 

for the number of iterations. 

Table 5.6 SQG2 operating parameter experiment results 

Parameter Levels Tested Fo F . (a =.05) 
enl 

(A) Reduction % 75%, 85%, 95% 1.59 3.35 

(B) Init. Pallet Step Size 1, 8, 15 1.15 3.35 

(C) Stopping Iteration 10,20,30 2.75 3.35 

AxB interaction 2.36 2.73 

AxC interaction 0.64 2.73 

BxC interaction 0.62 2.73 

ABC interaction 0.97 2.31 

Experimental Conditions: 

1. Two replicates for each combination. 
2. Response = optimal value in the last iteration. 

5.1.4. Determining SQG3's operating parameters 

The operation of SQG3 differs slightly from the two previous versions discussed. 

SQG3 has four different operating parameters that need to be set prior to its application 

to the optimization problem in this research: reduction multiplier percentage, initial pallet 

step size, initial station configuration step size, and the stopping iteration. To set alllOlif 

of these operating parameters, a 33 factorial experiment was implemented followed by a 
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single factor experiment. This allowed for the statistical testing of all four parameters. 

The results from the 3 factor factorial experiment are given in Table 5.7. This table 

plainly shows that none of the parameters, at the levels tested, had a significant effect on 

the response. Since no significant effects were detected, these three parameters were set 

Table 5.7 SQG3 operating parameter experiment results 

Parameter Levels Tested Fo F ,(a=.05) 
ent 

(A) Reduction % 75%, 85%, 95% 0.07 3.35 

(B) Init. Pallet Step Size 1,8, 15 0.10 3.35 

(C) Init. SC Step Size 1, 8, 15 0.38 3.35 

AxB interaction 1.16 2.73 

AxC interaction 1.56 2.73 

BxC interaction 0.77 2.73 

ABC interaction 0.66 2.31 

Experimental Conditions: 

1. Two replicates for each combination. 
2. Response = optimal value in the last iteration. 

according to minimum total values from the ANDV A output. The reduction multiplier 

percentage was set at 95%, the initial pallet step size was set at 8, and the initial station 

configuration step size was set at 15. The other required operating parameter is the 

stopping iteration. 

As mentioned before, a single factor experiment was used to analyze different 

levels of the stopping iteration parameter. T'-", findings from this experiment are shown 

in Table 5.8. This experiment shows that none of the various levels of the stopping 
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Table S.S ANOV A summary for stopping iteration of SQG3 experiment 

Source of Variation Levels Tested Fo F . (a=.05) 
enl 

Stopping iteration 5, 10, 15, 20, 25, 30 1.25 2.62 

Experimental Conditions: 
1. Five replicates for each combination. 
2. Response = optimal value in the last iteration. 

iteration had a significant effect on the response, so the level of the parameter was set 

using the minimum total. A stopping iteration of 25 was chosen. 

5.1.5. Determil,ing SQG4's operatillg parameters 

As mentioned before, SQG4 is the second half of the tandem algorithm. This 

heuristic has three operating parameters: the reduction multiplier percentage, the initial 

pallet step size, and the stopping iteration. To set these parameters a 33 factorial 

experiment was utilized. The results from this experiment are presented in Table 5.9. 

The response for the experiment in Table 5.9 is the sum of the best 20 

performance measures. The reader is reminded that SQG4 uses a data set found by GAL 

This data set contains the configurations of the 20 best individuals in the final generation 

of a genetic algorithm. SQG4 uses each one of these configurations as a starting point 

and attempts to optimize the number of pallets. This is the reason the performance 

measure for this experiment is a sum of the best 20 values. Table 5.9 shows that none of 

the factors tested provided a significant effect on the response. As in several previous 

cases, the factor level settings were chosen according the minimum total values found in 

Ute ANOV A. The reduction multiplier percentage, the initial pallet step size, and the 

stopping iteration were established at 85%,8, and 15, respectively. 
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Table 5.9 SQG4 operating parameter experiment results 

Parameter Levels Tested Fo F . (a=.05) ent 

(A) Reduction % 75%, 85%, 95% 2.24 3.35 

(B) Init. Pallet Step Size 1,8, 15 2.64 3.35 

(C) Stopping Iteration 10, 15,20 0.96 3.35 

AxB interaction 2.04 2.73 

Axe interaction 0.60 2.73 

BxC interaction 0.98 2.73 

ABC interaction 1.11 2.31 

Experimental Conditions: 
1. Two replicates for each combination. 
2. Response = Sum of the pm2's of top 20 individuals. 

5.1.6. A summary of chosen operating parameters 

The operating parameters for each algorithm tested in this research were 

established using design of experiments techniques. In some cases 3 factor factorial 

designs were utilized, and in other situations single factor experiments were employed. 

Tables 5.10 and 5.11 present summaries of the settings of all the various operating 

parameters determined in this chapter. The parameters are listed by their associated 

optimization heuristic. 

Table 5.10 A summary of operating parameter settings for GA based algorithms 

Algorithm Crossover Mutation Population Stopping 

Probability Probability Size Generation 

GA 0.60 0.02 60 10 

Tandem (GAl) 0.60 0.02 60 10 
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Table 5.11 A summary of operating parameter settings for SQG based algorithms 

Algorithm Reduction Initial Pallet Stat Config. Stopping 

Multiplier % Step Size Step Size Iteration 

SQG1 95% 8 15 

SQG2 75% 8 20 

SQG3 95% 8 15 25 

Tandem (SQG4) 85% 8 15 

5.2. Comparing the Optimization Algorithms 

To compare the five optimization heuristics given in this research, we must first 

define the entire set of experimental conditions. The operating parameters in Tables 5.10 

and 5.11 along with the following define the exact experimental conditions: 

1. SIMNORM.DAT was used as the data file. 
2. An a. level of .05 was used for all testing, except Bonferroni. 

3. The performance measure defmition pm2 was used; 

4. Penalty costs: upel = 2.00, upe2 = 0.40. 

5. Required production was set at 1368 (req). 

As listed, SIMNORM.DAT was used as the input data file. Recall that this file contains 

a mean value for "good cores produced" in a shift, the standard deviation for the number 

of "good cores produced" in a shift, the station configuration number, and the number of 

pallets. There is a set containing these four pieces of information for every possible 

combination of station configuration and number of pallets. Each optimization program 

produces a normal random variate using the mean and standard deviation when a value 

for "good evaporators produced" is needed. 
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The optimization heuristics were compared using three different approaches. The 

ftrst comparison involved a single factor experiment with each of the five algorithms 

being a treatment level. The response for this experiment was the best performance 

measure. The second comparison category is the optimal system conftgurations found by 

each of the algorithms. The third comparison classilles the efftciencies of the algorithms 

by their respective computer run times. 

5.2.1. Algorithm comparisoll by the best per/ormallce measure 

To compare the ftve algorithms, a logical response had to be selected. Remember 

that the genetic algorithm based heuristics produce several different sets of station 

conftgurations and associated number of pallets, whereas the SQG based heuristics 

produce a single system conftguration. So that comparisons would make sense, a 

response of the best performance measure was chosen. The ANDV A results from this 

experiment are displayed in Table 5.12. 

This table tells us that the different optimization algorithms provide signillcantly 

different effects on the performance measure. The mean values of the best performance 

measures over ten replications for each optimization algorithm are given in Table 5.13. 

To determine which optimization algorithms provide more desirable response values, a 

Bonferroni test was applied to each of the treatment means. The value of the Bonferroni 

test statistic was 0.1936. This implies that any difference in the mean responses between 

heuristics of greater than 0.1936 is signillcant Table 5.13 clearly shows that the mean 

values of the best performance measures for 10 replications are very close, except in the 

case of SQ?~ Since a data me containing the production information was used, it was 

possible to load this data into a spreadsheet and scan for minimum and maximum values. 

Having this data set in a spreadsheet, it was simple to calculate the performance measure. 
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Table 5.12 ANOV A summary for the comparison of the 5 optimization heuristics 

Source of Variation 

Optimization heuristic 

Experimental Conditions: 

Algorithms Tested 

GA, SQG 1, SQG2, 

SQG3, Tandem 

1. Ten replicates for each combination. 

Fo 
5.67 

2. Response = performance measure of optimal solution. 

F . (a =.05) 
ent 

2.58 

Table 5.13 Mean values of the best performance measures for 10 replications 

Algorithm Mean Value <l~ ) 
I-

GA 0.351126 

SQGl 0.351522 

SQG2 0.351639 

SQG3 0.582505 

Tandem 0.350993 

~ ___ SQG __ 3 __ ~1 1~ _______ S_QG __ 2._S_QG __ l._G_A_.T_~_d_em ____________ ~ 
> 

Decreasing PM Value 

Figure 5.5 Significance groupings of algorithm performance according to the best 
performance measure 
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Pm2 values were calculated using average production per shift value. The global 

minimum for pm2 using the average production per shift value was 0.348123. Four of 

the five heuristics provided optimal solutions reasonably close to this value. As 

mentioned before, the Bonferroni test was then applied. The groupings from this test are 

illustrated in Figure 5.5. These groupings in Figure 5.5 indicate that SQG2, SQGl, GA, 

and Tandem provide significantly better (lower) performance measure values than 

SQG3. 

5.2.2. Algorithm comparisoIJ by configuration of optimal solution 

Another important way of comparing the performance of the five heuristics 

proposed in this research, is to look at the station configuration and the number of pallets 

in the optimal solution. Table 5.14 presents the statistics concerning the station 

configuration and the number of pallets in the optimal solution. These results reveal 

some interesting facts about the optimal solutions picked by different heuristics. All the 

algorithms, except SQG3, provided optimal solutions consisting of four workers. Even 

SQG3 found four workers to be the optimal in 7 out of the 10 replications. This means 

that with the chosen required production level set at 1368, the unit cost of 

underproduction set at 2.0, and the unit cost of overproduction set at 0.4, four workers is 

the best choice. This outcome was expected when the value of 1368 was chosen for req. 

There are 15 different combinations of four workers possible in this system (6 choose 4). 

Most of these 15 station configurations were chosen by at least one of the algorithms at 

one time or another; however, none of the algorithms honed in on any particular station 

configuration. 
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Table 5.14 System configuration information from optimal solutions 

Algorithm ~ GA SQGl SQG2 SQG3 Tandem 

Replication ..1. (sc, np) (sc, np) (sc, np) (sc, np) (sc, np) 

1 011011 • 16 100111 • 19 111100. 17 011101 • 13 001111 • 14 

2 010111 • 16 110011 ,21 101101 ,23 110101 .24 110110. 16 

3 101101.15 111001 ,23 101110,22 110011 ,21 110110, 15 

4 100111 , 19 001111 ,20 010111 , 15 001011 ,20 110011 , 15 

5 110110,16 001111 , 14 101101 , 17 000111 , 13 101110, 15 

6 101101 , 16 010111 , 15 101101 , 15 110011 , 15 110011 , 15 

7 001111 , 19 010111 , 15 001111 , 17 010111 , 13 101110, 15 

8 111100, 17 111010, 16 111001 , 17 010111 , 18 011101 , 15 

9 110011 , 15 011101 , 16 111010, 18 110110,25 101011 , 15 

10 111100,16 011101 , 15 110101 ,20 100011 , 10 100111 , 15 
# of workers 4,4,4 4,4,4 

(min,max,avg) 
4,4,4 3,4,3.7 4,4,4 

# of Pallets 15, 19, 16.5 14,20, 17.4 15,23, 18.1 10,25,17.2 14, 16, 15 
(min,max,avg) 

Note: sc denotes station configuration and np denotes number of pallets 

Another interesting aspect of the data in Table 5.14 is the number of pallets given 

as optimal solutions. As previously mentioned, the Tandem algorithm was designed to 

first find optimal station configurations and then the optimal number of pallets for each 

of those configurations. The optimal solution for the Tandem algorithm contained 15 

pallets in 8 of the replications and 14 and 16 in the other two. GA and Tandem tended to 

have more consistent values for the optimal number of pallets than SQG 1, SQG2, or 

SQG3. 

5.2.3. Algorithm comf~-:'!:"'" by computer rull time 

Comparing the five different algorithms using computer run time as a point of 

interest can be broken down into two categories: run time using SIMAN to directly 
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obtain the production values and using a data file such as SIMNORM.DAT. As 

mentioned before, the direct link to SIMAN takes significantly more computer run time 

than using a data file like SIMNORM.DAT. Each of the heuristic programs have a 

certain amount of overhead, but a majority of the run time is due to the retrieval of 

production data. Table 5.15 lists the number of simulation runs or data file look ups 

required and the approximate average time to obtain one replication. The time 

measurements were made on a 486DX33 class microcomputer. Table 5.15 points out the 

tremendous time saved by using the data me SIMNORM.DAT to generate production 

data rather than directly using SIMAN. This table also shows that the heuristics 

implementing a genetic algorithm (GA and Tandem) require significantly more 

production information, and thus more computer run time. In terms of computer run 

time requirements, SQG 1 and SQG2 are much more efficient than either GAl or 

Tandem. 

Table 5.15 Comparison of algorithms according to computer run time 
Number of Approx. hours 7 repJ. Approx. hours 7 repJ. 

Algorithm configs. checked using SIMNORM.DAT using SIMAN directly 

GA 

SQG1 

SQG2 

SQG3 

Tandem 

660 

48 

84 

104 

1300 

0.0480 

0.0042 

0.0069 

0.0078 

0.2000 

15.2 

1.1 

1.9 

2.4 

29.9 
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5.3. General Observations Concerning the Optimization Algorithms 

The comparisons provided in this chapter have demonstrated that four of the five 

proposed heuristics arrive at good solutions for the optimization of the system 

configuration of the simulated evaporator assembly system. The four best heuristics 

were GA, SQGl, SQG2, and Tandem. There are some other general considerations 

when comparing these four acceptable heuristics. 

SQG 1 exhibited very good perfonnance in the categories of perfonnance measure 

optimization and computer run time; however, this algorithm has a potentially dangerous 

flaw. When the initial number of workers is far from the optimal value, SQGl can get 

hung up on some distant local minima The required production was set at 1368 in the 

definition of perfonnance measure 2 (pm2). This value was set anticipating that one or 

more cases with four workers would be optimal. If the required production had been set 

at some value where the optimal number of workers would be for example one or six, 

there is a much greater chance that SQG 1 would have problems. 

The genetic based algorithms (GA and Tandem) both provided very good results 

but took inordinate amounts of time to run relative to the SQG based algorithms. One 

must not overlook the flexibility of the genetic algorithms. The genetic based algorithms 

supply multiple solutions. Approximately 25 to 35% of the solutions contained in the 

final generation are not significantly different than the declared optima. This adds a 

degree of flexibility to the optimization of the system. Imagine a situation where a 

specific build station or some combination of build stations cannot be used for one reason 

or another, with a genetic based algorithm there are several acceptable alternative 

solutions available. 

Chapter 6 will summarize the findings of this research and offer some topics for 

future work. 
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6. CONCLUSION 

The work presented in this research can be divided into two distinct categories: 

development of the simulation model and the application of optimization algorithms. A 

simulation model was developed to represent an existing evaporator assembly system. 

This assembly system has six parallel manual evaporator build stations and several 

automatic stations. The system can be officially classified as a palletized semi-automatic 

asynchronous build line. The evaporator assembly system is subject to effects from 

several stochastic variables. These stochastic elements make deterministic analysis of the 

system nearly impossible; therefore, techniques involving stochastic optimization were 

implemented. Five different optimization heuristics were applied to the simulated 

assembly system. These heuristics were based on genetic algorithms, stochastic 

quasigradient methods (SQG), or both. The decision variables used in this optimization 

problem were station configuration and number of pallets. The measure of performance 

utilized was essentially a unit cost considering the number of workers assembling 

evaporators, the required number of evaporators per shift, the amount of 

underproduction, and the amount of overproduction. 

The simulation model was used to obtain production information for the 

evaporator assembly system. Two methods of utilizing production information were 

proposed: a direct link with SIMAN to obtain "good cores produced" values and creating 

a production data me and simply performing sequential accesses to obtain "good cores 

produced" values. Due to enormous time savings, the "good cores produced" values 

were assumed normal and a data me containing the mean, standard deviation, station 

configuration, and number of pallets ilJl atl possible system configurations was 

generated. 
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This research compared the performance of the five proposed heuristics: GAl, 

SQGI, SQG2, SQG3, and Tandem. GAl applies a heuristic form of a genetic algorithm, 

while SQGI, SQG2, and SQG3 employ a form of a stochastic quasigradient method. 

The Tandem algorithm exploits both GAs and SQG methods. Before directly comparing 

the optimization algorithms, factorial experiments were utilized to set each heuristic's 

operating parameters. The five heuristics were then compared using three different 

criteria: the best performance measure, station configuration of optimal solution(s), and 

required computer run time. 

The results in this research showed that GAl, SQGI, SQG2, and Tandem were 

able to fmd one or more solutions sporting near-optimal performance measures. SQG3 

did a poor job of fmding a near-optimal solution. In every replicate, GAl, SQG I, SQG2, 

and Tandem declared a four worker case optimal. This implies that one of the 

configurations containing four workers is probably the global optima. The genetic based 

algorithms were more consistent on their choice of the optimal number of pallets than the 

SQG based heuristics. The last comparison issue was computer run time. SQG I, SQG2, 

and SQG3 were superior to the genetic algorithms in terms of run time because the GAs 

required far more production data. 

It was stated in previous chapters that the Tandem algorithm was designed to use 

a genetic algorithm to identify the main "valleys" on the response surface and then apply 

a SQG method to hone in on the lowest point in that "valley." On the average, the 

Tandem algorithm provided solutions possessing the smallest performance measure; 

however, there was not a statistically significant difference between Tandem, GAl, 

SQGI, and SQG2. Even so, the Tandem algorithm was successful in finding near­

optimal solutions for the simulated evaporator assembly system. Another piece of 

evidence supporting the positive performance of the Tandem algorithm is the consistency 
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of the number of pallets in the solutions declared optimal. In 8 out of 10 replicates, the 

number of pallets was 15. In the other two replicates the number of pallets declared 

optimal was 14 and 16. The ranges of the numbers of pallets chosen as optimal for the 

other heuristics encompassed 15; however, the other heuristics were not nearly as 

consistent as the Tandem algorithm. This consistency presents strong evidence that the 

actual optimal solution contains 15 pallets. The performance of the Tandem algorithm 

was very favorable in all aspects except relative computer run time. The fact that genetic 

algorithms require a lot of time to run is no surprise; Wellman (1991) came to this same 

conclusion. 

Up to this point, no direct recommendation has been made as to which of the five 

heuristics to use. We will now address this issue. The behavior of SQG 1 may not be 

reliable in a larger solution space. Considering their construction, SQG2 should be more 

robust in a wider range of solution spaces than SQG 1. A larger solution space implies an 

expanded evaporator assembly system, or another entirely different system. The 

behavior of these algorithms would most likely change in the solution space of a different 

problem. The two genetic algorithm based heuristics, GAl and Tandem, provided good 

performance measure results but were very computationally inefficient. If one were to 

blindly apply one of the algorithms discussed to some similar but different optimization 

problem, use Tandem, GAl, or SQG2. If the time required to obtain a performance 

measure value for a given set of decision variables is small, then application of the 

Tandem algorithm is recommended. The time to evaluate a set of decision variables is 

the key factor in deciding 'Yhether to use a genetic algorithm based heuristic. 

The operation of genetic algorithms and SQG methods is highly dependent on the 

choice of the operating parameters. Optimal parameter settings will vary according to 

the solution space. There are two important considerations when using GAs or SQG 
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methods. First, test various combinations of operating parameters using. design of 

experiments or other appropriate methods. Second, carefully choose the different 

operating parameter settings to test. This involves obtaining a thorough understanding of 

the system being studied so knowledgeable choices can be made. 

This research has presented two new ideas. The first is the application of 

optimization heuristics to parallel server assembly systems. The second new idea is the 

tandem application of a genetic algorithm and a stochastic quasigradient method. 

Another important aspect of this research is the application of optimization techniques on 

a "real world" system. 

There are several topics for future research that arise from this study. The 

heuristics presented in this research could be applied to larger parallel server systems. 

Another possible topic would be to investigate the behavior of other heuristics (e.g. 

simulated annealing or optimization homotopy) on the optimization of the assembly 

system presented in this research. 
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APPENDIX A 

EVAPORATOR ASSEMBLY SYSTEM SIMULATION, 

SIMAN MODEL FILE 
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BEGIN; 

npres 

pres 

80 

CREATE, 1,1000:0,1; ! Time ° to 1000 is init time 
BRANCH, 1: 

ALWAYS,pres; 
CREATE, 1,6400:0,1; ! These create statements simulate 
BRANCH, 1: ! the working day. 

AL W AYS,npres; 
CREATE, 1,7180:0,1; 
BRANCH, 1: 

AL W AYS,pres; 
CREATE, 1,13600:0,1; 
BRANCH, 1: 

AL W AYS,npres; 
CREATE, 1,14380:0,1; 
BRANCH, 1: 

AL W AYS,pres; 
CREATE, 1,18700:0,1; 
BRANCH, 1: 

AL W AYS,npres; 
CREATE, 1,20800:0,1; 
BRANCH, 1: 

AL W AYS,pres; 
CREATE, 1,26200:0,1; 
BRANCH, 1: 

AL W AYS,npres; 
CREATE, 1,26980:0,1; 
BRANCH, 1: 

AL W AYS,pres; 
CREATE, 1,29500:0,1; ! builders leave at end of shift 
BRANCH, 1: 

AL W AYS,npres; 
CREATE, 1,31499.9:0,1; 
WRITE, PM_OlJfPUT,"(F6.1)":NC(Gcores):DISPOSE; 

ASSIGN: oplgone = 1; ! builders on break 
ASSIGN: op2gone = 1; 
ASSIGN: op3gone= 1; 
ASSIGN: op4gone= 1; 
ASSIGN: op5gone = 1; 
ASSIGN: op6gone = I:DISPOSE; 

ASSIGN: oplgone = 0; ! builders working 
ASSIGN: op2gone=0; 
ASSIGN: op3gone=0; 
ASSIGN: op4gone =0; 
ASSIGN: op5gone = 0; 
ASSIGN: op6gone = O:DISPOSE; 

CREATE, 1,0: 1,1; ! Check the number of the last station 
BRANCH, 1: 

IF,laststa .EQ. 6,16: 
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IF,laststa .EQ. 5,15: 
IF,laststa .EQ. 4,14: 
IF,laststa .EQ. 3,13: 
IF,laststa .EQ. 2,12: 
ELSE,l1; 

16 ASSIGN: laststa = 6:DISPOSE; 
15 ASSIGN: csl2xl2a = 5:DISPOSE; 
14 ASSIGN: csllxI2 = 5:DISPOSE; 
13 ASSIGN: csl0xli = 5:DISPOSE; 
12 ASSIGN: cs9xl0 = 5:DISPOSE; 
11 ASSIGN: cs8x9 = 5:DISPOSE; 

; ******* TOP OF THE MODEL ******* 

top ASSIGN: cs7ax7b= 0; 
.rps7b; QUEUE, 

SCAN: 
ASSIGN: 

«NQ(rps8)+cs7bx8) .LT. 3) .AND. (lift4 .EQ. 0); 
cs7bx8 = 1; 

ASSIGN: lift4 = 1; ! indicate lift4 is busy 
DELAY: 2.86+0.42+ 1.54; ! P to lift4, lift, and clear 
ASSIGN: lift4 = 0; ! indicate lift4 is clear 
DELAY: 3.95; ! lift4 proxy to rps8 
ASSIGN: cs7bx8 = 0; 

QUEUE, rps8; 
SCAN: «builtby .EQ. 1) .AND. (NQ(sbI) .EQ. 0) .AND. 

(liftS .EQ. 0) .AND. (lift15 .EQ. 0) .AND. 
(lift18 .EQ. 0» .OR. «builtby .GT. 1) .AND. 
«NQ(rps9)+cs8x9) .LT. 2» .OR. «staistat .EQ.O) 
.AND. «NQ(rps9)+es8x9) .LT. 2» .OR. « 
staistat .EQ. 2) .AND. (liftS .EQ. 0) .AND. 
(builtby .EQ. 0) .AND. (lift15 .EQ. 0) .AND. 
(lift18 .EQ. 0) .AND. (NQ(sbI) .EQ. 0» .OR. 
«staistat .EQ. 1) .AND. «NQ(rps9)+cs8x9).LT.3) 
.AND. (builtby .EQ. 0»; 

! This is evaporator core build station 1 

BRANCH. 1: 
IF,builtby .EQ. I,ToStaI: 
IF,builtby .GT. I,PassI: 
IF,staistat .EQ. O,PassI: 
IF,staistat .EQ. I,PassI: 
IF,staistat .EQ. 2,ToStaI; 

ToStai ASSIGN: 
ASSIGN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 

staistat = 1; 
liftS = 1: 
lift15 = 1; 
lift18 = 1; 
3.19; ! liftS to lift15 
liftS = 0; ! clear liftS 



www.manaraa.com

82 

DELAY: 1.31; ! liftl5 to liftlS 
ASSIGN: liftl5 = 0; ! clear liftl5 
DELAY: 2.04; ! liftlS to proxy 
ASSIGN: liftlS = 0; ! clear liftlS 
DELAY: 2.1S; ! proxy to sbl 
QUEUE, sbl; 
SCAN: (NQ(stalbut) .EQ. 0) .AND. (NR(stal) .EQ. 0) .AND.(NQ(olgbold) .EQ. 0); 
ASSIGN: stalstat = 2; 
QUEUE, sldbuf; 
SEIZE: stal; 
QUEUE, olgbold; 
SCAN: (oplgone .EQ. 0); 
BRANCH, 1: 

IF,builtby .EQ. O,slnew: 
ELSE,slrej; 

sInew DELAY: ERLANG(6.0 1 3,3)+49.77; ! build time for new core 
BRANCH, I: 

ALWAYS,ctnl; 
slrej DELAY: EXPO(50.4607)+IS.SS; ! fix rejected core 
ctnl RELEASE: stal; 

ASSIGN: builtby = I; 
QUEUE, sta1 buf; 
SCAN: (liftl7 .EQ. 0) .AND. (liftl6 .EQ. 0) .AND.(NQ(rpsl) .EQ. 0); 
COUNf: StalJob; 
ASSIGN: liftl6 = 1; 
ASSIGN: liftl7 = I; 
ASSIGN: csl = 1; 
DELAY: 1.61+0.42+1.31+0.42+1.55; 
ASSIGN: liftl6 = 0; 
ASSIGN: liftl7 = 0; 
BRANCH, 1: 

AL W A YS,Rtl; ! brancb to return track at 1 

****** HEADED TO BUILD STATION 2 ****** 

Pass 1 ASSIGN: csSx9 = I; 
DELAY: 7.15; ! travel from rpsS to rps9 
ASSIGN: csSx9 = 0; 
QUEUE, rps9; 
SCAN: «builtby .EQ. 2) .AND. (NQ(sb2) .EQ. 0) .AND. 

(lift6 .EQ. 0) .AND. (liftl4 .EQ. 0) .AND. 
(lift19 .EQ. 0» .OR. «builtby .GT. 2) .AND. 
«NQ(rpslO)+cs9xlO) .LT. 2» .OR. «sta2stat .EQ. 
0) .AND. «NQ(rpslO)+cs9xl0) .LT. 2» .OR. « 
sta2stat .EQ. 2) .AND. (lift6 .EQ. 0) .AND. 
(builtby .EQ. 0) .AND. (liftl4 .EQ. 0) .AND. 
(liftl9 .EQ. 0) .AND. (NQ(sb2) .EQ. 0» .OR. 
«sta2stat .EQ. 1) .AND. «NQ(rpslO)+cs9xlO) 
.LT. 3) .AND. (builtby .EQ. 0»; 

BRANCH, 1: 
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IF,builtby .EQ. 2,ToSta2: 
IF,builtby .GT. 2,Pass2: 
IF,sta2stat .EQ. O,Pass2: 
IF,sta2stat .EQ. I,Pass2: 
IF,sta2stat.EQ.2,ToSta2; 

ToSta2 ASSIGN: sta2stat = 1; 
ASSIGN: lift6 = 1; 
ASSIGN: liftl4 = 1; 
ASSIGN: liftl9 = 1; 
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DELAY: 1.55+0.42+1.31; ! lift6to liftl4 
ASSIGN: lift6 = 0; ! clear lift6 
DELAY: 1.31; ! liftl4to liftl9 
ASSIGN: liftl4 = 0; ! clear liftl4 
DELAY: 0.42+ 1.62; ! liftI9 to proxy 
ASSIGN: liftl9 = 0; ! clear liftI9 
DELAY: 2.18; ! proxy to sb2 
QUEUE, sb2; 
SCAN: (NQ(sta2buf) .EQ. 0) .AND. (NR(sta2) .EQ. 0) .AND. (NQ(02ghold) .EQ. 0); 
ASSIGN:· sta2stat = 2; 
STATION, station2; 
QUEUE, s2dbuf; 
SEIZE: sta2; 
QUEUE, o2ghold; 
SCAN: (op2gone .EQ. 0); 
BRANCH, 1: 

IF,builtby .EQ. O,s2new: 
ELSE,s2rej; 

s2new DELAY: ERLANG(6.0 1 3,3)+49.77; ! build time for new core 
BRANCH, 1: 

AL W AYS,ctn2; 
s2rej DELAY: EXPO(50.4607)+18.88; ! fIX rejected core 
ctn2 RELEASE: sta2; 

ASSIGN: builtby = 2; 
. QUEUE, sta2buf; 

SCAN: (liftl8 .EQ. 0) .AND. (liftI5 .EQ. 0) .AND.«NQ(rpsI7)+rt2xl) .LT. 2); 
COUNT: Sta2Job; 
ASSIGN: rt2xI = 1; 
ASSIGN: liftl5 = I; 
ASSIGN: liftl8 = 1; 
DELAY: 1.62+0.42+1.31+0.42+1.55; 
ASSIGN: liftl5 = 0; 
ASSIGN: liftl8 = 0; 
BRANCH, 1: 

AL W A YS,Rt2; ! branch to return track at2 

•••••• HEADED TO BUILD STATION 3 •••••• 

Pass2 ASSIGN: cs9xlO = 1; 
DELAY: 7.04; ! travel from rps9 to rpslO 
ASSIGN: cs9xlO= 0; 
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QUEUE, rpslO; 
SCAN: «builtby .EQ. 3) .AND. (NQ(sb3) .EQ. 0) .AND. 

(lift7 .EQ. 0) .AND. (liftl3 .EQ. 0) .AND. 
(lifaO .EQ. 0» .OR. «builtby .GT. 3) .AND. 
«NQ(rpsll)+csIOx1I) .LT. I» .OR. «sta3stat .EQ. 
0) .AND. «NQ(rpsll)+csIOxll) .LT. I» .OR. « 
sta3stat .EQ. 2) .AND. (lift7 .EQ. 0) .AND. 
(builtby .EQ. 0) .AND. (lift13 .EQ. 0) .AND. 
(lifaO .EQ. 0) .AND. (NQ(sb3) .EQ. 0» .OR. 
«sta3stat .EQ. I) .AND. «NQ(rpsll)+cslOxll) 
.LT.2) .AND. (builtby .EQ. 0»; 

BRANCH, I: 
IF,builtby .EQ. 3,ToSta3: 
IF,builtby .GT. 3,Pass3: 
IF,sta3stat .EQ. 0,Pass3: 
IF,sta3stat .EQ. I,Pass3: 
IF,sta3stat .EQ. 2,ToSta3; 

ToSta3 ASSIGN: sta3stat = I; 
ASSIGN: lift7 = I; 
ASSIGN: liftl3 = I; 
ASSIGN: lifaO = I; 
DELAY: 1.55+0.42+1.31;! lift7 to lift13 
ASSIGN: lift7 = 0; ! clear lift7 
DELAY: 1.31; ! lift13 to IifaO 
ASSIGN: lift13 = 0; ! clear lift13 
DELAY: 0.42+1.79; ! lifaO to proxy 
ASSIGN: lifaO = 0; ! clear lifaO 
DELAY: 2.03; ! proxy to sb3 
QUEUE, sb3; 
SCAN: (NQ(sta3but) .EQ. 0) .AND. (NR(sta3) .EQ. 0) 

.AND. (NQ(03gboId) .EQ. 0); 
ASSIGN: sta3stat = 2; 
STATION, station3; 
QUEUE, s3dbuf; 
SEIZE: sta3; 
QUEUE, o3gboId; 
SCAN: (op3gone .EQ. 0); 
BRANCH, I: 

IF,builtby .EQ. 0,s3new: 
ELSE,s3rej; 

s3new DELAY: ERLANG(6.013,3)+49.77;! build time for new core 
BRANCH, I: 

AL W AYS,ctn3; 
s3rej DELAY: EXPO(50.4607)+18.88; ! fIX rejected core 
ctn3 RELEASE: sta3; 

ASSIGN: builtby = 3; 
QUEUE, sta3buf; 
SCAN: (lift19 .EQ. 0) .AND. (liftl4 .EQ. 0) .AND.«NQ(rpsI6)+rt3x2) .LT. 2); 
COUNf: Sta3Job; 
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ASSIGN: rt3x2 = I; 
ASSIGN: lift14 = I; 
ASSIGN: lift19 = I; 
DELAY: 1.62+0.42+1.31+0.42+1.55; 
ASSIGN: lift14 = 0; 
ASSIGN: lift19 = 0; 
BRANCH, I: 
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AL W A YS,Rt3; ! brancb to return track at 3 

****** HEADED TO BUILD STATION 4 ****** 

Pass3 ASSIGN: cslOx11 = I; 
DELAY: 7.04; ! travel from rpslO to rpsll 
ASSIGN: cslOxll = 0; 
QUEUE, rpsll; 
SCAN: «builtby .EQ. 4) .AND. (NQ(sb4) .EQ. 0) .AND. 

(lift8 .EQ. 0) .AND. (lift12 .EQ. 0) .AND. 
(lift21 .EQ. 0» .OR. «builtby .GT. 4) .AND. 
«NQ(rpsI2)+csllxI2) .LT. I» .OR. «sta4stat .EQ. 
0) .AND. «NQ(rpsI2)+csllxI2) .LT. I» .OR. « 
sta4stat .EQ. 2) .AND. (lift8 .EQ. 0) .AND. 
(builtby .EQ. 0) .AND. (liftl2 .EQ. 0) .AND. 
(lift21 .EQ. 0) .AND. (NQ(sb4) .EQ. 0» .OR. 
«sta4stat .EQ. I) .AND. «NQ(rpsI2)+csllxI2) 
.LT. 2) .AND. (builtby .EQ. 0»; 

BRANCH, I: 
IF,builtby .EQ. 4,ToSta4: 
IF,builtby .GT. 4,Pass4: 
IF,sta4stat .EQ. O,Pass4: 
IF,sta4stat .EQ. I,Pass4: 
IF,sta4stat .EQ. 2,ToSta4; 

ToSta4 ASSIGN: sta4stat = I; 
ASSIGN: lift8 = I; 
ASSIGN: lift12 = I; 
ASSIGN: lift21 = I; 
DELAY: 1.55+0.42+1.31; ! lift8 to lift12 
ASSIGN: lift8 = 0; ! clear lift8 
DELAY: 1.31; ! liftl2 to lift21 
ASSIGN: lift12 = 0; ! clear lift12 
DELAY: 0.42+1.79; ! lift21 to proxy 
ASSIGN: lift21 = 0; ! clear lift21 
DELAY: 1.96; ! proxy to sb4 
QUEUE, sb4; 
SCAN: (NQ(sta4buf) .EQ. 0) .AND. (NR(sta4) .EQ. 0) .AND. (NQ(04gbold) .EQ. 0); 
ASSIGN: sta4stat = 2; 
STATION, station4; 
QUEUE, s4dbuf; 
SEIZE: sta4; 
QUEUE, 04gbold; 
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SCAN: (op4gone .EQ. 0); 
BRANCH, 1: 

IF,builtby .EQ. O,s4new: 
ELSE,s4rej; 

s4new DELAY: ERLANG(6.013,3)+49.77;! build time for new core 
BRANCH, 1: 

AL W AYS,ctn4; 
s4rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core 
ctn4 RELEASE: sta4; 

ASSIGN: builtby = 4; 
QUEUE, sta4buf; 
SCAN: (lift20 .EQ. 0) .AND. (liftl3 .EQ. 0) .AND. «NQ(rpsI5)+rt4x3) .LT. 2); 
COUNT: Sta4Job; 
ASSIGN: rt4x3 = 1; 
ASSIGN: lift20 = 1; 
ASSIGN: liftl3 = 1; 
DELAY: 1.62+0.42+ 1.31 +0.42+ 1.55; 
ASSIGN: liftl3 = 0; 
ASSIGN: lift20 = 0; 
BRANCH, 1: 

AL W A YS,Rt4; ! branch to return track at 4 

****** HEADED TO BUILD STATION 5 ****** 

Pass4 ASSIGN: csllx12 = 1; 
DELAY: 7.05; ! travel from rpsll to rpsl2 
ASSIGN: csllxl2 = 0; 
QUEUE, rpsl2; 
SCAN: «builtby .EQ. 5) .AND. (NQ(sb5) .EQ. 0) .AND. 

(lift9 .EQ. 0) .AND. (liftll .EQ. 0) .AND. 
(lift22 .EQ. 0» .OR. «builtby .GT. 5) .AND. 
«NQ(rpsl2a)+csI2xl2a) .LT. 2».OR.«sta5stat .EQ. 
0) .AND. «NQ(rpsl2a)+csI2xl2a) .LT. 2» .OR. « 
sta5stat .EQ. 2) .AND. (lift9 .EQ. 0) .AND. 
(builtby .EQ. 0) .AND. (liftll .EQ. 0) .AND. 
(lift22 .EQ. 0) .AND. (NQ(sb5) .EQ. 0» .OR. 
«sta5stat .EQ. 1) .AND. «NQ(rpsl2a)+csI2xl2a) 
.LT. 3) .AND. (builtby .EQ. 0»; 

BRANCH, 1: 
IF,builtby .EQ. 5,ToSta5: 
IF,builtby .GT. 5,Pass5: 
IF,sta5stat .EQ. 0,Pass5: 
IF,sta5stat .EQ. I,Pass5: 
IF,sta5stat .EQ. 2, ToSta5; 

ToSta5 ASSIGN: 
ASSIGN: 
ASSIGN: 
ASSIGN: 
DELAY: 

sta5stat = 1; 
lift9 = 1; 

. liftll=l; 
lift22 = 1; 
1.55+0.42+ 1.31; ! lift9 to liftll 
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ASSIGN: lift9 = 0; ! clear lift9 
DELAY: 1.31; ! liftll to Hft22 
ASSIGN: liftll = 0; ! clear liftll 
DELAY: 0.42+1.79; ! lift22 to proxy 
ASSIGN: lift22 = 0; ! clear lift22 
DELAY: 1.96; ! proxy to sb5 
QUEUE, sb5; 
SCAN: (NQ(sta5but) .EQ. 0) .AND. (NR(sta5) .EQ. O).AND. (NQ(05ghold) .EQ. 0); 
ASSIGN: sta5stat = 2; 
STATION, station5; 
QUEUE, s5dbuf; 
SEIZE: sta5; 
QUEUE, o5ghold; 
SCAN: (op5gone .EQ. 0); 
BRANCH, 1: 

IF,builtby .EQ. 0,s5new: 
ELSE,s5rej; 

s5new DELAY: ERLANG(6.013,3)+49.77;! build time for new core 
BRANCH, I: 

AL W AYS,ctn5; 
s5rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core. 
ctn5 RELEASE: sta5; 

ASSIGN: builtby = 5; 
QUEUE, sta5buf; 
SCAN: (lift21 .EQ.O) .AND. (liftl2 .EQ. 0) .AND. «NQ(rpsI4)+rt5x4) .LT. 2); 
COUNf: Sta5Job; 
ASSIGN: liftl2 = I; 
ASSIGN: lift21 = I; 
ASSIGN: rt5x4 = I; 
DELAY: 1.62+0.42+1.31+0.42+1.55; 
ASSIGN: liftl2 = 0; 
ASSIGN: lift21 = 0; 
BRANCH, I: 

AL W A YS,Rt5; ! branch to return track at 5 

****** HEADED TO BUILD STATION 6 ****** 

Pass5 ASSIGN: csl2xl2a = I; 
BRANCH, I: 

IF,(NQ(rpsl2a)+csI2xl2a) .EQ. O,nonein: 
ELSE,onein; 

nonein DELAY: 7.24; ! rpsl2 to rpsl2a empty queue 
BRANCH, I: 

AL W AYS,cnt6; 
onein DELAY: 5.71; ! rpsl2 to rpsl2a one in queue 
cnt6 ASSIGN: csI2x12a = 0; 

QUEUE, rpsl2a; 
SCAN: (liftlO .EQ. 0) .AND. (NQ(sb6) .EQ. 0); 
ASSIGN: liftlO = I; 
ASSIGN: sta6stat = I; 
DELAY: 1.41+0.42+2.61+0.42+3.83; ! rpsl2a to sb6 
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ASSIGN: liftlO = 0; ! clear liftlO 
QUEUE, sb6; 
SCAN: (NQ(sta6buf) .EQ. 0) .AND. (NR(sta6) .EQ. O).AND. (NQ(06gbold) .EQ. 0); 
ASSIGN: sta6stat = 2; 
STATION, station6; 
QUEUE, s6dbuf; 
SEIZE: sta6; 
QUEUE, 06gbold; 
SCAN: (op6gone .EQ. 0); 
BRANCH, I: 

IF,builtby .EQ. 0,s6new: 
ELSE,s6rej; 

s6new DELAY: ERLANG(6.013,3)+49.77;! build time for new core 
BRANCH, I: 

AL W AYS,ctn6; 
s6rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core 
ctn6 RELEASE: sta6; 

ASSIGN: builtby = 6; 
QUEUE, sta6buf; 
SCAN: (lift22 .EQ. 0) .AND. (lift11 .EQ. 0) .AND. «NQ(rpsI3)+rt6x5) .LT. 3); 
COUNT: Sta6Job; 

**** This is the Return Track **** 

Rt5 

Rt4 

ASSIGN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 

QUEUE, 
SCAN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 
DELAY: 
ASSIGN: 

QUEUE, 
SCAN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 
DELAY: 
ASSIGN: 

rt6x5 = I; 
liftll = I; 
lift22 = I; 
1.62+0.42+1.31+0.42+1.53; ! sta6 to proxy 
liftll = 0; 
lift22 = 0; 
4.01; ! proxy to rpsl3 
rt6x5 = 0; 

rpsl3; 
(lift12 .EQ. 0) .AND. «NQ(rpsI4)+rt5x4) .LT. 3); 
rt5x4 = I; 
lift12 = I; 
3.12; ! rps13 to past lift12 
lift12 = 0; 
3.93; ! just past lift12 to rpsl4 
rt5x4 = 0; 

rps14; 
(lift13 .EQ. 0) .AND. «NQ(rpsI5)+rt4x3) .LT. 3); 
rt4x3 = I; 
lift13 = I; 
3.12; ! rpsl4 tQ past lift13 
lift13 = 0; 
4.02; ! just past lift13 to rpsl5 
rt4x3 = 0; 
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Rt3 

Rt2 

Rtl 

QUEUE, 
SCAN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 
DELAY: 
ASSIGN: 

QUEUE, 
SCAN: 
ASSIGN: 
ASSIGN: 
DELAY: 
ASSIGN: 
DELAY: 
ASSIGN: 

QUEUE, 
SCAN: 
ASSIGN: 
DELAY: 
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rpsl5; 
(lift14 .EQ. 0) .AND. «NQ(rpsI6)+rt3x2) .LT. 3); 
rt3x2 = 1; 
lift14 = 1; 
3.12; ! rps15 to past lift14 
lift14 = 0; 
4.03; ! just past lift14 to rps16 
rt3x2 = 0; 

rpsl6; 
(lift15 .EQ. 0) .AND. «NQ(rpsI7)+rt2xl) .LT. 3); 
rt2xl = 1; 
lift15 = 1; 
3.12; ! rps16 to past lift15 
lift15 = 0; 
4.02; ! just past lift15 to rps17 
rt2xl = 0; 

rpsl7; 
(lift16 .EQ. 0) .AND. (NQ(rpsl) .EQ. 0) .AND. (csl .EQ. 0); 
csl = 1; 
3.12; ! clear lift 16 

"'''''''** Entering the Unload Loop *"'''''''''' 

DELAY: 1.71; 
ASSIGN: csl = 0; 

QUEUE, rpsl; 
SCAN: (NR(vpa) .EQ. 0) .AND. (NQ(vpabuO .EQ. 0); 
DELAY: 3.26; 
QUEUE, dbvpa; ! dummy buffer for vision prealign 
SEIZE: vpa; ! seize vision prealign 
DELAY: ERLANG(0.1110897,3) + 3.31; 
RELEASE: vpa; ! release vision prealign 
QUEUE, vpabuf; ! hold pallet for vision system 
SCAN: (NR(vision) .EQ. 0) .AND. (NQ(visbuO .EQ. 0); 
DELAY: 1.80; 

QUEUE, dbvision; ! dummy buffer for vision system 
SEIZE: vision; ! seize vision system 
ASSIGN: status = 0; ! clear pallet status 
BRANCH, 1: 

WITH,0.985,Accept: 
WITH,O.O 15,Reject; 

Reject DELAY: UNihiRM(8.21,9.00); 
ASSIGN: status = 1; ! set rejected pallet status 
COUNT: Bcores; 
BRANCH, 1: 

AL W A YS,Cont; 
Accept DELAY: ERLANG(0.072442,8) + 5.26; 
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ASSIGN: builtby = 0; 
COUNT: Gcores; 

RELEASE: vision; ! release vision system station 
QUEUE, 
SCAN: 
DELAY: 

visbuf; ! hold pallet for vision system 
(NQ(rps2buf) .EQ. 0) .AND. (NR(rps2) .EQ. 0); 
3.33; 

QUEUE, dbrps2; ! dummy buffer for chip read 
SEIZE: rps2; ! seize rps2 chip read 
DELAY: 1.08; ! read chip info from pallet 
RELEASE: rps2; ! release rps2 chip read 
QUEUE, rps2buf; ! hold for clear rps3 
SCAN: NQ(rps3) .EQ. 0; 
DELAY: 5.00; 

QUEUE, 
SCAN: 
DELAY: 

QUEUE, 
SCAN: 
DELAY: 

rps3; 
NQ(spsI) .EQ. 0; ! see if spsI is clear 

1.61; ! go to spsI 

spsI; 
(NR(band) .EQ. 0) .AND. (NQ(bandbut) .EQ. 0); 
2.94; ! sps delay time + travel time 

QUEUE, dband; ! dummy buffer for bander 
SEIZE: band; ! seize banding station 
BRANCH, .1: 

IF,status .EQ. I,BadI: 
ELSE,GoodI; 

Good 1 DELAY: 5.94; ! constant banding time 
BRANCH, 1: 

AL W A YS,Cont2; 
Badl DELAY: 1.08; ! regular chip read time 
Cont2 RELEASE: band; 

QUEUE, bandbuf; ! Used in initialization also 
SCAN: (liftl .EQ.O) .AND. (NQ(rps4) .LT. 2); 
ASSIGN: lift! = 1; 
DELAY: 4.93; ! H to liftl proxy wI lift time 
ASSIGN: lift! = 0; 
DELAY: 3.13; ! Just past lift! to rps4 
QUEUE, rps4; 
SCAN: NQ(rps5) .LT. 2; 

DELAY: 
QUEUE, 
SCAN: 
ASSIGN: 
DELAY: 
ASSIGN: 
DELAY: 
QUEUE, 

5.36; ! Trovel from rps4 to rps5 
rps5; 

(lift2 .EQ. 0) .AND. (NQ(rps6) .EQ. 0); 
lift2 = 1; 
5.04; ! J to lift2 proxy wI lift time 
lift2 = 0; 
1.43; ! proxy switch to K 
rps6; 
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SCAN: 
DELAY: 
QUEUE, 
SCAN: 
DELAY: 
QUEUE, 
SCAN: 
DELAY: 
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NQ(sps2) .EQ. 0; ! wait for sps2 to be clear 
1.65; ! move to sps2 
sps2; 

(NQ(rps7) .EQ. 0); 
2.82; 
rps7; 

(NQ(ulbuO .EQ. 0) .AND. (NR(unload) .EQ. 0); 
8.72; 

QUEUE, duload; ! dummy buffer for unload 
SEIZE: unload; ! seize unload station 
BRANCH, 1: 

IF,status .EQ. I,Bad2: 
ELSE,Good2; 

Good2 DELAY: 4.98; ! constant unload time 
BRANCH, 1: 

AL W AYS,Cont3; 
Bad2 DELAY: 1.08; ! regular chip read time 
Cont3 RELEASE: unload; 

QUEUE, ulbuf; 
SCAN: (lift3 .EQ. 0) .AND. «NQ(rps7a)+cs7x7a) .LT. 3); 
ASSIGN: cs7x7a = 1; 
ASSIGN: lift3 = 1; 
DELAY: 6.65; ! unload to lift3 proxy wI lift time 
ASSIGN: lift3 = 0; 
DELAY: 3.32; ! lift3 proxy to rps7a 
ASSIGN: cs7x7a = 0; 
QUEUE, rps7a; 
SCAN: (NQ(rps7b)+cs7ax7b) .LT. 3; 
ASSIGN: cs7ax7b = 1; 
DELAY: 2.58; 
BRANCH, 1: 

AL W A YS,top; ! Enter the station feeder loop 
END; 
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APPENDIXB 

EVAPORATOR ASSEMBLY SYSTEM SIMULATION, 

SIMAN EXPERIMENT FRAME 
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BEGIN; 

ATIRIBUfES: 1,builtby,0: 
2,StartTime: 
3,status; 

VARIABLES: liftl,O: 
lift2,O: 
lift3,O: 
lift4,0: 
lift5,O: 
lift6,O: 
lift7,0: 
lift8,O: 
lift9,O: 
liftlO,O: 
liftl1,0: 
lift12,0: 
liftl3,0: 
liftl4,0: 
lift15,0: 
liftl6,0: 
liftl7,0: 
liftl8,0: 
lift19,0: 
lift20,0: 
lift2I,O: 
lift22,0: 
stalstat,2: 
sta2stat,2: 
sta3stat,2: 
sta4stat,2: 
sta5stat,2: 
sta6stat,2: 
laststa,6: 
csl,O: 
cs7x7a,0: 
cs7ax7b.O: 
cs7bx8.0: 
cs8x9.0: 
cs9xlO.0: 
cs lOx 1 1,0: 
csllxl2,O: 
cs12x12a,0: 
rt6x5.0: 
rt5x4.0: 
rt4x3.0: 
rt3x2,0: 
rt2xl.O: 
oplgone.l: 
op2gone,I: 
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STATIONS: 

QUEUES: 

op3gone,1: 
op4gone,l: 
op5gone,1: 
op6gone,l; 

station 1: 
station2: 
station3: 
station4: 
station5: 
station6: 
vision-prealign: 
vision_system: 
chip_read: 
core_bander: 
unload_core; 

1,rps8, FIFO: 
2,rps9, FIFO: 
3,rpslO, FIFO: 
4,rpsll, FIFO: 
6,rps12, FIFO: 
7,rps12a, FIFO: 
8,rps13, FIFO: 
9,rps14, FIFO: 
1O,rps15, FIFO: 
1l,rps16, FIFO: 
12,rps17, FIFO: 
13,stalbuf, FIFO: 
14,sta2buf, FIFO: 
15,sta3buf, FIFO: 
16,sta4buf, FIFO: 
17,sta5buf, FIFO: 
18,sta6buf, FIFO: 
19,sldbuf, FIFO: 
20,s2dbuf, FIFO: 
21,s3dbuf, FIFO: 
22,s4dbuf, FIFO: 
23,s5dbuf, FIFO: 
24,s6dbuf, FIFO: 
25,sb1, FIFO: 
26,sb2, FIFO: 
27,sb3, FIFO: 
28,sb4, FIFO: 
29,sb5, FIFO: 
30,sb6, FIFO: 

31,rps1, FIFO: 
32,dbvpa, FIFO: 
33, vpabuf, FIFO: 
34,dbvision,FIFO: 
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35,visbuf, FIFO: 
36,dbrps2, FIFO: 
37,rps2buf, FIFO: 
38,rps3, FIFO: 
39,spsl, FIFO: 
4O,dband, FIFO: 
41,bandbuf, FIFO: 
42,rps4, FIFO: 
43,rps5, FIFO: 
44,rps6, FIFO: 
45,sps2, FIFO: 
46,rps7, FIFO: 
47,duload, FIFO: 
48,ulbuf, FIFO: 
49,rps7a, FIFO: 
50,rps7b, FIFO: 
51,olgbold, FIFO: 
52,o2gbold, FIFO: 
53,o3gbold, FIFO: 
54,04gbold, FIFO: 
55,o5gbold, FIFO: 
56,06gbold, FIFO; 

RESOURCES: l,stal: 

ARRIVALS: 

2,sta2: 
3,sta3: 
4,sta4: 
5,sta5: 
6,sta6: 
7,vpa: 
8,vision: 
9,rps2: 
lO,band: 
II,unload; 

I,QUEUE(bandbuf),O,1: 
2,QUEUE(bandbuf), 10, 1 : 
3,QUEUE(bandbuf),20,1 : 
4,QUEUE(bandbuf),30,1: 
5,QUEUE(bandbuf),40,1 : 
6,QUEUE(bandbuf),50,1: 
7,QUEUE(bandbuf),60,I: 
8,QUEUE(bandbuf), 70,1: 
9,QUEUE(bandbuf),80,1: 
10,QUEUE(bandbuf),90,1 : 
II,QUEUE(bandbuf),I00,I: 
12,QUEUE(bandbuf),llO,1 : 
13,QUEUE(bandbuf), 120,1: 
14,QUEUE(bandbuf),130,1: 
15,QUEUE(bandbuf), 140, 1: 
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16,QUEUE(bandbut), 150, 1: 
17,QUEUE(bandbut), 160, 1: 
18,QUEUE(bandbut),170,1: 
19,QUEUE(bandbut),180,1: 
20,QUEUE(bandbut), 190, 1: 
21,QUEUE(bandbut),200,I: 
22,QUEUE(bandbut),210,1; 

COUNfERS: 1,StalJob: 
2,Sta2Job: 
3,Sta3Job: 
4,Sta4Job: 
5,Sta5Job: 
6,Sta6Job: 
7,Bcores: 
8,Gcores; 

Fll..ES: PM_OUfPtIT, "PM.OtIT" ,SEQ,FRE; 

REPLICATE, 5,0,31500; 

END; 
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APPENDIXC 

TANDEM ALGORITHM MASTER PROGRAM, 

C SOURCE CODE 
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/* tandem.c -- This is the driver file for the tandem algorithm. 
This algorithm calls GAl.EXE and SQG4.EXE. 

GAl.EXE implements a simple genetic algorithm to optimize 
the station configurations in the assembly system. 

SQG4.EXE takes the station configurations which GAl.EXE 
wrote into TAND.DAT and then optimizes the number of 
pallets. The SQG method is applied to each of the station 
configurations found by the simple genetic algorithm. 

Masters Thesis Work 
Kraig A. Downs 
IMSE, Iowa State University 
Spring 1993 

*1 

#include <stdio.h> 
#include <stdlib.h> 
#include <process.h> 

FILE *fpout, *fpinl, *fpin2; 

mainO 
{ 

} 

intro_to_screenO; 
printf("\n\n Genetic Algorithm executing ... h); 
spawnl(P _WAIT," gal.exe" ,NULL); 
printf("\n\n SQG Algorithm executing ... h); 
spawnl(P _WAIT, "sqg4.exe" ,NULL); 
printf("\n\n\n The program has finished, \n"); 
printf(" cbeck TAOUT.DAT for the results.\n\n"); 

intro_to_screenO 
1* This functions prints an introduction to the screen */ 

{ 
clrscrO; 

} 

printf("\n THE TANDEM ALGORITHM\n\n"); 
printf(" By: Kraig Downs\n"); 
printf(" Master of Science - Thesis, 1993\n\n\n"); 
printf("\n GAl.EXE will place data in TAND.DAT\n"); 
printf(" The final output data will be placed in TAOUT.DAT\n"); 
printf("\n\n Please wait while the program is operating ... H); 
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APPENDIXD 

TANDEM ALGORITHM SLAVE PROGRAM, 

IMPLEMENTATION OF A GENETIC ALGORITHM, 

C SOURCE CODE 
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/* ga1.c -- a simple genetic algorithm 
This genetic algorithm is the simple genetic algorithm (SGA) 
which is described in the following text: 

"Genetic Algorithms in Search, Optimization, 
and Machine Learning" 

David E. Goldberg 
Addison-Wesley Publishing 
1989 

This program is the ftrst portion of the tandem algorithm. This program 
is designed to supply good station conftgurations. The SQG part of the 
tandem algorithm, looks at number of pallets. 

This program is part of the research done to fulftll the requirements 
for a Master of Science degree in Industrial Engineering. 

Programming by : 
Kraig Downs 
IMSEDept 
Iowa State University 
1993 */ 

#include <stdio.h> 
#include <stdlib.h> 
#include <process.h> 

struct individual 
{ 
int chromo[12]; /* genotype = bitstring */ 
int x[3]; /* phenotype = 2 integers */ 
float fttness; /* objective function value */ 
int parenti; /* parent number 1 */ 
int parent2; /* parent number 2 */ 
int cross_site; /* cross-over site */ 

} 0Idpop[80],newpop[80]; 

/* variable declarations * / 

/* The four random number generators used in this program (rlnumO, 
r2numO, r3numO, r4numO) are derived from the published work listed 
below. 

*/ 

"Some EffIcient Random Number Generators for Micro-Computers" 
Thesen, Sun, and Wang 
Department of Industrial Engineering, University of Wisconsin-Madison 
Proceedings of the 1984 Winter Simulation Conference 

float rlnum(void); /* random number generator #1 */ 
float r2num(void); /* random number generator #2 *1 
float r3num(void); /* random number generator #3 */ 
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float r4num(void); 1* random number generator #4 *1 

iot popsize,gen,maxgen; 
float peross,pmutation,sumfitness; 
int nmutation,ncross,jcross; 
float avg,max,min; 
long seedl,seed3,seed4; 1* global mg seeds *1 
int seed2; 
float req,upel,upe2; 

FaE *fpout; 

mainO 
{ 
int i; 

upel = 1.0; 
upe2= 0.25; 
req = 1368.0; 

printf("\n\n Input a random seed -> "); 
scanf("%1i",&seedl); 
popsize = 60; 1* WARNING!! This must be an even number. *1 
maxgen= 10; 
pcross = 0.6; 1* crossover probability *1 
pmutation = 0.02; 1* mutation probability *1 

nmutation = 0; 
ncross = 0; 
gen=O; 

1* open global output me *1 
if«fpout=fopen("tand.dat", "w"» = NULL) 

{ 
printf("Unable to open TAND.DAT file !!\n\n"); 
exit(1); 

} 
create_init-POpulationO; 
statistics( oJdpop); 
1* generate_inicreport(); *1 
I*debuggit( oldpop); *1 
l*fcIose(fpout); *1 
l*exit(1);*1 
for (i=l; k=maxgen; i++) 

{ 

} 

gen++; 
generationO; 
statistics(newpop); 
1* report(); *1 
copy_new _into_old(oldpop,newpop); 
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sc_np_outO; 1* outputs final station configs and respective # of pals *1 
fclose(fpout); 
} 

copy_new _into_old(oldpop,newpop) 
struct individual oldpop[80]; 

{ 

} 

struct individual newpop[80]; 
1* This function copies the newpop into the oldpop, thus readying 

the population for the next generation. 
*1 

int i,j; 

for (i=I; k=popsize; i++) 
{ 

} 

for 0=1; j<=ll; j++) 
oldpop[iJ.cbromo[j] = newpop[iJ.cbromo[j]; 

oldpop[i].x[lJ = newpop[i].x[I]; 
oldpop[iJ.x[2] = newpop[i].x[2]; 
oldpop[iJ.fitness = newpop[iJ.fitness; 
oldpop[i].parentl = newpop[iJ.parent1; 
oldpop[i].parent2 = newpop[i].parent2; 
oldpop[iJ.cross_site = newpop[i].cross_site; 

int selecUndividual(work-POp) 
struct individual work-POp[80]; 

{ 

1* This function is responsible for the selection of a 
single individual using a modified roulette wheel 
selection method. This function is transformed to 
accommodate a minimization problem. *1 

int i,pop_index; 1* population index *1 
float rpw,partial_sum; 1* random point on wheel, partial sum *1 
float tsf; 1* transformed sumfitness for min problem *1 
float tfv; 1* transformed fitness value for min problem *1 

partial_sum = 0.0; 
pop_index = 1; 
tsf= 0.0; 
for (i=I; k=popsize; i++) 

tsf = tsf + (sumfitnesslwork-POp[i].fitness); 
rpw = rlnumO * tsf; 
tfv = (sumfitnesslwork-POp[pop_index].fitness); 
partial_sum = partial_sum + tfv; 
while «rpw >= partial_sum) && (pop_index < popsize» 

{ 
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} 

tfv = (sumfitnesslwork_pop[pop_index].fitness); 
partiaCsum = partial_sum + tfv; 

return pop_index; 
} 

int flip{pcross) 
float pcross; 
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/* returns 1 with probability pcross, zero otherwise. */ 
{ 

} 

float mdnum; 
mdnum = rlnumO; 
if (mdnum <= pcross) 

return 1; 
else 

return 0; 

int find_x_siteO 
1* Selects a random integer between 1 and 10 inclusive. We are 

looking for the gap between 2 alleles. "'/ 

int num,randint; 

(int)randint = rlnumO*32767; 
num = (randint%lO) + 1; 
return num; 
} 

crossover(parentl,parent2,childl,child2) 
int parentI [I2],parent2[I2],chlldi [I2].child2[I2]; 

/* This function determines whether a cross is going to occur 
and then performs the cross. 

*/ 

intj; 

if (flip(pcross» 
{ 

} 

jcross = find_x_siteO; /* assumes constant chromosome length */ 
ncross = ncross + 1; 

else 
jcross = 11; 

for (j=I;j<=jcross;j++) 
{ 
childl[j] = mutation(parentI[j]); 
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child2UJ = mutation(parent2U]); 
} 

if Gcross != 11) 
{ 

} 
} 

for G=jcross+ l;j<= 11;j++) 
{ 

childlUJ = mutation(parent2U]); 
child2UJ = mutation(parentlO1); 

int mutation(alleleval) 
int alleleval; 
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1* This function mutates an allele with pmutation probability 
and updates mutation counter if a mutation occurs. */ 

{ 
int mutate; 
mutate = flip(pmutation); /* mutate with pmutation probability */ 
if (mutate) 1* Change the allele value */ 

{ 

} 

nmutation = nmutation + 1; 
if (alleleval) 

return 0; 
else 

return I; 

else 
return alleleval; /* No change occurred */ 

} 

generationO 

{ 

/* This function creates a new generation using select. crossover, 
and mutation. This function ( generationO ) assumes an even 
numbered population size. */ 

int j,mate1 ,mate2; 

j=l; 
whileG<=popsize) 

{ 
1* select a pair of mates *1 
matel = selecUndividual(oldpop); 
mate2 = selecUndividual(oldpop); 
/* crossover and mutations achieved by crossover() */ 
crossover( oldpop[mate I ].chromo,oldpop[mate2] .chromo, 
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newpop[j].chromo,newpop[j+ I].chromo); 

} 
} 

'* Decode string, evaluate fitness, and record parentage date on both 
children *' 

newpop[j].x[ I] = decode_station30nfig(newpop[j].chromo); 
newpop[j] .x[2] = decode_num_oCpallets(newpop[j] .chromo); 
seCfitness_ value(newpop,j); 
newpop[j].parentl = matel; 
newpopUJ.parent2 = mate2; 
newpop[j].cross_site = jcross; 

newpop[j+ 1].x[1] = decode_station30nfig(newpop[j+ I].chromo); 
newpop[j+ I] .x[2] = decode_num_oCpallets(newpop[j+ I] .chromo); 
seCfitness_ value(newpop.j+ 1); 
newpop[j+I].parentl = matel; 
newpop[j+I].parent2 = mate2; 
newpop[j+I].cross_site = jcross; 

j=j+2; '* Increment population index *' 

int decode_station_config(station_config) 
int station_config[12]; 

'* This function decodes the station configuration *' 
{ 
int b32,bI6,bS,b4,b2,bl,bsum; 

b32 = station30nfig[I]*32; 
bl6 = station_config[2] * 16; 
bS = station_config[3]*S; 
b4 = station30nfig[4]*4; 
b2 = station_config[5]*2; 
bl = station_config[6] * I; 
bsum = b32+bl6+b8+b4+b2+bl; 
return bsum; 
} 

int decode_num_oCpallets(station_config) 
int station_config[12]; 

'* This function decodes the number of pallets *' 

iot b 16,b8,b4,b2,b I,bsum; 

bl6 = station_config[7]*16; 
b8 = station_config[S]*S; 
b4 = station_config[9]*4; 
b2 = station_config[1O]*2; 
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bl = station_config[ll] * I; 
bsum = bl6+bS+b4+b2+bl; 
return bsum; 
} 

seCfitness_ value2( work-POp,index) 
struct individual work_pop[SO]; 
int index; 
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I*This function scans the data file for the number of good 
cores produced by a given system configuration. It also 
calculates the performance measure using the average value 
for production rates. *1 

{ 
FILE *fp; 
float avg...,gc,pm,oprate,hrs_pecshift; 
float numbecoCoperators; 
int config,pals,legal,mp,np; 

oprate = 15.00; 
hrs-J>ecshift = 8.0; 

mp = max-pallets(work_pop,index); 
np = decode_num_oCpallets(work_pop[index].chromo); 
if «np > mp)lI(work_pop[index].x[2] = O)II(work_pop[index].x[l])) 

{ 
legal=O; 
avg...,gc = I; 1* illegal number of pallets gets low production rate *1 

} 
else 

legal=l; 
if (legal) 

{ 

} 

if«fp=fopen("simavg.dat", "r"» = NULL) 
{ 

} 

printf("Cannot open SIMA VG.DAT file ! !\o\o"); 
exit(l); 

fscanf(fp, "%f%d%d\o" ,&avg...,gc,&config,&pals); 
while«config != work_pop[index].x[1])II(pals != work-POp[index].x[2])) 

fscanf(fp, "%f%d%d\n" ,&avg...,gc,&config,&pals); 
fclose(fp); 

numbecoCoperators = work-POp[index].chromo[l] + work-POp[index].chromo[2] + 
work-POp[index].chromo[3] + work-POp[index].chromo[4] + 
work-POp[index].chromo[5] + \. "'_:"-r"Op[index].chromo[6]; 

if «numbecoCoperators = 0)II(work-POp[index].x[2] = 0» 
{ 
numbecoCoperators = 10; 1* big penalty for no operator case *1 
avg...,gc = 1; 1* minimum production for no operator case *1 

} 
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pm = (oprate '" hrs_pecshift '" number_oCoperators)/avWc; 
work-POp[index).fitness = pm; 
} 

seCfitness_ value( work_pop, index) 
struct individual work_pop[80); 
int index; 

{ 

I'" This function scans the data file for the number of good 
cores produced by a given system configuration. It also 
calculates the performance measure using a Normal 
random variate using the parameters created from the 
5 replications. "'I 

FILE "'fp; 
float mean,sdev,prod,pm,oprate,hrs_pecshift; 
float numbecoCoperators,mp,np,nrv ,sum; 
int config,pals,legal,i; 

oprate = 15.00; 
hrs_pecshift = 8.0; 

mp = max_pallets(work_pop,index); 
np = decode_num_oCpallets(work-POp[index).chromo); 
if «np > mp)lI(work_pop[index).x[2) = O)II(work_pop[index].x[l) = 0» 

{ 
legal=O; 
nrv=l; 1* illegal number of pallets gets low production rate *1 

} 
else 

legal=l; 
if (legal) 

{ 

} 

if«fp=fopen("simnorm.dat", "r"» = NULL) 
{ 

printf("Cannot open SIMNORM.DAT file !!\o\o"); 
exit(1); 

} 
fscanf(fp,"%f%f%d%d\o",&mean,&sdev,&config,&pals); 
wbile«config != work_pop[index).x[I])II(pals != work_pop[index].x[2])) 

fscanf(fp, "%f%f%d%d\o" ,&mean,&sdev,&config,&pals); 
fclose(fp); 
I'" create a normal random variate "'I 
sum = -6.0; 
for (i=I; k=12; i++) 

:...... -sum + rlnumO; 
nrv = (sum'" sdev) + mean; 

numbecoCoperators = work-POp[index).chromo[l) + work_pop[index).chromo[2) + 
work-POp[index].chromo[3) + work_pop[index].chromo[4) + 
work_pop[index].chromo[5] + work-POp[index].chromo[6]; 
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if «numbecoCoperators = 0)II(work_pop[index].x[2] = 0» 
{ 
numbecoCoperators = 10; '* big penalty for no operator case *' 
nrv = 1; '* minimum production for no operator case *' 

} 
pm = (oprate * hrs_pecshift * numbecoCoperators)'nrv; 
work-POp[index].fiUless = pm; 
} 

seCfiUless_ value 1 (work_pop,index) 
struct individual work_pop[80]; 
int index; 

{ 

'* This function scans the data file for the number of good 
cores produced by a given system cOnfiguration. It also 
calculates the performance measure using a Normal 
random variate using the parameters created from the 

5 replications. *' 
FILE *fp; 
float mean,sdev,prod,pm,oprate,hrs_pecshift; 
float numbecoCoperators,mp,np,nrv ,sum; 
int config,pals,legal,I; 
float penalty,rr; 

oprate = 15.00; 
hrs~cshift = 8.0; 

mp = max-pallets(work_pop,index); 
np = decode_num_of-pallets(work_pop[index].chromo); 
if «np > mp)II(work_pop[index].x[2] = O)II(work_pop[index].x[l] = 0» 

{ 
legal=O; 
nrv=l; '* illegal number of pallets gets low production rate *' 

} 
else 

legal=l; 
if (legal) 

{ 
if«fp=fopen("simnorm.dat", "r"» = Nill..L) 

{ 

} 

printf("Cannot open SIMNORM.DAT file !!\n\n"); 
exit(l); 

fscanf(fp, "%f%f%d%d\n" ,&mean,&sdev,&config,&pals); 
while«config != work_pop[index].x[IDII(pals != work-POp[index].x[2])) 

fscanf(fp, "%f%f%d%d\n" ,&mean,&sdev ,&config,&pals); 
fclose(fp); '* create a normal random variate *' 
sum = -6.0; 
for (i=l; k=12; i++) 
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sum = sum + rlnum(); 
nrv = (sum * sdev) + mean; 

} 
numbecoCopemtors = work_pop[index].chromo[1] + work_pop[index].chromo[2] + 

work_pop[index].chromo[3] + wor~p[index].chromo[4] + 
work-POp[index].chromo[5] + work_pop[index].chromo[6]; 

if «number_oCopemtors = 0)II(work-POp[index].x[2] = 0» 
{ 
number_oCopemtors = 10; 1* big penalty for no opemtor case *1 
nrv = 1; /* minimum production for no operator case *1 

} 
rr = nrv/req; 
if (rr<=1.0) penalty = (upc1 * (req - nrv»/nrv; 
else penalty = (upc2 * (nrv - req»/nrv; 
pm = (opmte * hrs-pccshift * numbecoCopemtors)/nrv; 
pm = pm + penalty; 
work_pop[index].fitness = pm; 
} 

seCfitness_ value4(work-POp,index) 
struct individual work-POp[80]; 
int index; 

{ 

1* This function scans the data file for the number of good 
cores produced by a given system configumtion. It also 
calculates the performance measure using the average value 
for production mtes. */ 

FILE *fp; 
float avuc,pm,opmte,hrs-pccshift; 
float numbecoCoperators,rr,penalty; 
int config,pals,legal,mp,np; 

oprate = 15.00; 
hrs-pcr_shift = 8.0; 

mp = max-paIlets(work-POp,index); 
np = decode_num_of-paIlets(work-POp[index].chromo); 
if «np > mp)lI(work-POp[index].x[2] = O)lIwork-POp[index].x[l] = 0) 

{ 
legal=O; 
avuc = 1; 1* illegal number of pallets gets low production rate *1 

} 
else 

legal=l; 
if (legal) 

{ 
if({fp=fopen("simavg.dat", "r"» = NULL) 

{ 
printf("Cannot open SIMAVG.DAT file !!\o\n"); 
exit(1); 
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} 
fscanf(fp, "%f%d%d\n" ,&avwc,&config,&pals); 
while«config != work-POp[index].x[I])II(pals != work-POp[index].x[2])) 

fscanf(fp, "%f%d%d\n" ,&avwc,&config,&pals); 
fclose(fp); 

numbecoCopemtors = work-POp[index].chromo[1] + work_pop[index].chromo[2] + 
work-POp[index].chromo[3] + work-POp[index].chromo[4] + 
work_pop[index].chromo[5] + work-POp[index].chromo[6]; 

if «number_oCopemtors = 0)II(work-POp[index].x[2] = 0» 
{ 

} 

numbecoCoperators = 10; 1* big penalty for no operator case *1 
avwc = 1; 1* minimum production for no operator case *1 

rr = avwclreq; 
if (rr<=l.O) penalty = (upel * (req - avwc»/avwc; 
else penalty = (upe2 * (avwc - req»/avWc; 
pm = (oprate * hrs-J>ecshift * numbecoCoperators)/avwc; 
pm = pm + penalty; 
work-POp[index].fitness = pm; 
} 

create_init-POpulationO 
1* This function creates the initial population of strings. 

Strings are randomly created. 
*1 

int xl,x2; 

for (xl=l; xl<=popsize; xl++) 
{ 

} 

for (x2=1; x2<=1l; x2++) 
oldpop[xl].chromo[x2] = flip(0.5); 

oldpop[xl].x[1] = decode_station30nfig(oldpop[xl].chromo); 
oldpop[xl].x[2] = decode_num_oCpallets(oldpop[xl].chromo); 
secfitness_ value( oldpop,x I); 
oldpop[xl].parentl = 0; 
oldpop[x1].parent2 = 0; 
oldpop[xl].cross_site = 0; 

int max-pallets( work-POp.index) 
struct individual wuuevop[80]; 
iut index; 

1* This function calculates the maximum number of pallets allowed 

*1 

for a given station configuration. The absolute maximum number 
of pallets is 31. 



www.manaraa.com

111 

int xl ,x2,i,num_sta_op,laststa,maxpals; 

num_sta_op = work_pop[index].chromo[l] + work_pop[index].chromo[2]+ 
work...,pop[index].chromo[3] + work...,pop[index].chromo[4]+ 
work_pop[index].chromo[5] + work_pop[index].chromo[6]; 

laststa = 0; 
laststa = work_pop[index].chromo[6]=1 ? 1 : Iaststa; 
Iaststa = work_pop[index].chromo[5]=1 ? 2: laststa; 
laststa = work_pop[index].chromo[4]=1 ? 3: laststa; 
laststa = work...,pop[index].chromo[3]=1 ? 4: Iaststa; 
laststa = work...,pop[index].chromo[2]=1 ? 5: laststa; 
Iaststa = work...,pop[index].chromo[1]=1 ? 6 : ]aststa; 
x2= 10; 
switch(laststa) 

{ 
case 6: xl = 10; 

break; 
case 5: xl =8; 

break; 
case 4: xl =7; 

break; 
case 3: xl =6; 

break; 
caSe 2: xl =4; 

break; 
case 1: xl :.2; 

break; 
case 0: xl = 1; 

break; 
} 

maxpals = (2"'num_sta_op) + xl + x2; 
if (maxpals = 32) maxpals=31; 
return maxpals; 
} 

generate_init_reportO 

{ 

'''' This function is used to generate a header in the output file 
which gives all the initial system parameters. 

"" 

fprintf(fpout."The Application of a Genetic Algorithm to the Optimization\o"); 
fprintf(fpout. "of an Asynchronous Semi-Automatic Assembly System.\o\o"); 
fprintf(fpout. " Kraig A. Downs\o"); 
fprintf(fpout." Thesis Work\O"); 
fprintf(fpout." Spring 1993\0\0\0"); 
fprintf(fpout. "Summary of Parameters\o"); 
fprintf(fpout." Population Size: %d\o".popsize); 
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fprintf(fpout," Chromosome Length is fixed at l1.\n"); 
fprintf(fpout," Maximum number of generations: %d\n",maxgen); 
fprintf(fpout," Crossover probability: %f\n",pcross); 
fprintf(fpout," Mutation probability: %f\n\n\n",pmutation); 
fprintf(fpout, "Initial Population Statistics\n"); 
fprintf(fpout," Initial population minimum fitness: %f\n",min); 
fprintf(fpout," Initial population maximum fitness: %f\n",max); 
fprintf{fpout," Initial population average fitness: %f\n",avg); 
fprintf(fpout, " Initial population sum of fitness : %f\n" ,sumfitness); 
fprintf(fpout, "\n\n\n\n\n\n\n\n"); 
} 

statistics( work-POp) 

{ 

} 

struct individual work-POp[80]; 
/* This function calculates population statistics for a generation. */ 

int i; 

sumfitness = work-POp[l].fitness; 
min = work-POp[l].fitness; 
max = work-POp[l].fitness; 
for (i=2; k=popsize; i++) 

{ 

} 

sumfitness = sumfitness + work-POp[i].fitness; 
if (work-POp[i].fitness > max) 

max = worlCpop[i].fitness; /* set new max */ 
if (work_pop[i].fitness < min) 

min = work-POp[i].fitness; /* set new min */ 

avg = sumfitnesslpopsize; /* calculation of average */ 

sc_np_outO 
/* This function outputs the station configurations and the number 

of pallets of the individuals in the final population. 
*/ 

int i; 
fprintf(fpout, "%d\n" ,popsize); 
for (i=l; k=popsize; i++) 

fprintf(fpout, "%d %d\n",newpop[i].x[1],newpop[i].x[2]); 
} . 

reportO 
/* This function creates the generation reports used to view 

the results from the genetic algorithm. 
*/ 
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int i; 

fprintf( fpou t, II ----------------------------------------------------------------------------\n"); 
fprintf(fpout," Population Report\n"); 
fprintf(fpout," Genemtion %d Genemtion %d\n",gen-l,gen); 
fprintf(fpout," # Individual SC NP Fitness # Parents XS Individual SC NP Fitness\Il"); 
fprintf{fpout, "---------------------------------------------------------------------------\n "); 
for (i=l; k=popsize; i++) 

( 
fprintf(fpout."%3d: %ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld %2d.%2d %1O.6fH", 

i,oldpop[i].chromo[I],oldpop[i].chromo[2],oldpop[i].chromo[3],oldpop[i].chromo[4], 
oldpop[i].chromo[5],oldpop[i].chromo[6],oldpop[i).chromo[7),oldpop[i).chromo[8], 
oldpop[i].chromo[9],oldpop[i].chromo[10],oldpop[i].chromo[ll],oldpop[i].x[I], 
oldpop[i].x[2],oldpop[i].fitness); 

fprintf{fpout, "%3d:(%2d. %2d) %2d % ld% ld% ld% ld% ld% ld% ld% ld% ld% ld% ld %2d, %2d 
%1O.6t\n", 

} 

i,newpop[i]. parentl,newpop[i]. parent2,newpop[i] .cross_site, 
newpop[i].chromo[I],newpop[i].chromo[2],newpop[i].chromo[3],newpop[i].chromo[4], 
newpop[i].chromo[5],newpop[i].chromo[6],newpop[i].chromo[7],newpop[i].chromo[8], 
newpop[i ].chromo[9],newpop[i] .chromo[ I OJ,newpop[i J .chromo[ II] ,newpop[i].x [ 1], 
newpop[i].x[2],newpop[iJ.fitness); 

fprintf( fpout, " ------------------------------------------------------------------------\n"); 
fprintf(fpout, "Genemtion I Stats: max=%1O.6f, min=%1O.6f, avg=%1O.6f, sumfit=%10.61\n",max,min, 

avg,sumfitness); 
fprintf(fpout, "Accumulated Stats: nmutation=%5d. ncross=%5d\n" ,nmutation,ncross); 

fprintf(fpout, "-------------------------------------------------------------------\n \n \n \n \n "); 
} 

1* ****************************************************************** *1 

int uniform(min,max) 
float min,max; 

} 

float urn; 
int uprod; 
urn = (min + «(max+l) - min)*r1numQ»; 
uprod = (int)urn; 
return uprod; 

float rlnumO 
{ 

float ran_num; 
seedl = (seed I *2125) + 1; 
if (seed 1 < 0) 

seed 1 = seed I + 2147483647 + I; 
ran_num = seedl/2147483647.0; 
return ran_num; 
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APPENDIXE 

TANDEM ALGORITHM SLAVE PROGRAM, 

IMPLEMENTATION OF A SQG METHOD, 

C SOURCE CODE 
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/* SQG4.C·-- This is the program file for the implementation of a 
stochastic quasigradient method to the optimization of 
an evaporator assembly system at Ford Refrigeration and 
Electronics in Connersville, IN. 

*/ 

Kraig A. Downs 
Masters Thesis Work 
February 1993 

This is the second half of the tandem algorithm. The tandem 
algorithm is described and programmed in T ANDEM.c. T ANDEM.c 
simply calls GAl.exe and SQG4.exe in order to implement the 
tandem application of a genetic algorithm and a SQG method. 

This variation of the SQG method uses station configurations 
produce by GAl.exe. It then optimizes the number of pallets 
for each of these configurations. 

This implementation of SQG uses a forward finite difference 
equation to estimate the gradient. It also uses a modified 
step size. 

#include <stdio.h> 
#include <stdlib.h> 

float rlnumO; 
int maxpalsO; 
int find_confi~numO; 
float secobjjunc_valO; /* uses pml, simnorm.dat */ 
float secobLfunc_va120; /* uses pm2, simnorm.dat */ 
float secobj_func_val30; /* uses pm2, simavg.dat */ 

struct solution 
{ 
int np; /* number of pallets */ 
int s6; /* station 6 */ 
int s5; /* station 5 */ 
int s4; /* station 4 */ 
int s3; /* station 3 *1 
int s2; 1* station 2 */ 
int sl; 1* station 1 *1 
float pm; /* performance measure *1 

} csol,tsol; /* current solution, old solution *1 

FILE *fpl; 1* output file *1 
long seed1; /* random number generator seed *1 
float pm; /* performance measure * / 
iot pss; /* pallet step size */ 
int itecnum; 1* the iteration number */ 
float g1; /* gradient 1 */ 
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int htc[2]; 1* how to change *1 
int popsize; 1* number of configurations from GA results *1 
int gar[80][3]; 1* GA results from TAND.DAT file *1 
float pm_array[80][4]; 1* Contains the final perfonnance measure for 

float req; 
float rp; 
float upcl; 
float upc2; 

each config. Final pm found using SQG method. *1 
1* required production mte *1 

1* reduction percentage *1 
1* unit cost for underproduction *1 
1* unit cost for overproduction *1 

mainO 
{ 
int i,j,ipc; 

if «fp l=fopen("taout.dat", "w"»=NULL) 
{ 

} 

puts("ERROR! Unable to open TAOUT.DAT\n\o"); 
exit(l); 

seed 1 = 92383; 
req = 1368.0; 
rp= 0.85; 
ipc = 15; 1* the number of itemtions per configuration *1 
upcl = 2.0; 
upc2= 0.40; 

inicrand..,genO; 1* initializes random number genemtor *1 
10ad..,ga_resultsO; 

for (i= 1; k=popsize; i++) 
{ 

} 

itecnum = 1; 1* initialize itemtion counter *1 
fprintf(fpl,"\o\o\o"); 
fprintf(fpl," »»»»»»»»»»»»»»»»»»»»»»»»»»»\0"); 
fprintf(fpl," Station configuration # %d\o",i); 
fprintf(fpl," «««««««««««««««««««««««««««\0"); 
pss= 8; 
filCcsol(i); 
for (j=I; j<=ipc; j++) 

{ 
calculate..,gmdients( csol); 
secnexcsolution(); 
1* write_statsO; *1 
itecnum++; 
modify _pssO; 

if (tsol.pm < csol.pm) set-pm_array(tsol,i); 
else secpm_array(csol,i); 

sorcby_pmO; 1* sorts the pm_arrayOO in ascending order by pm *1 
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outpucpm_arrayO; /* writes pm_array[JD to a file */ 
fclose(fpl); 
} 

filCcsol(index) 
int index; 

{ 

1* This function properly fills the current solution csol with 
the station configuration and number of pallets. 

*/ 

encode_sc(gar[index] [1]); 
csol.np = gar[index][2]; 
csol.pm = secobLfunc_val(csol); 

} 

secpm_array( wsol,index) 
struct solution wsol; 

{ 

} 

int index; 
/* This function adds the optimal solution to the pm_arrayDD */ 

pm_array[index][l] = (find_confi~num(wsol) * 1.0); 
pm_array[index][2] = (wsol.np * 1.0); 
pm_array[index][3] = (wsol.pm * 1.0); 

load~a_resultsO 

} 

/* This function loads the results from TAND.DAT into the two 
dimensional array gar[80][3]. 

*/ 

ALE *fpx; 
int i; 

if «fpx=fopen("tand.dat", "r"»=NULL) 
{ 

} 

puts("ERROR! Unable to open TAND.DAT\n\n"); 
exit(l); 

fscanf(fpx, "%d\n" ,&popsize); 
for (i=l; k=popsize; i++) 

fscanf(fpx, "%d %d\n" ,&gar[i][l],&gar[i][2]); 
l~lUse(fpx); 

calculate~radients(wsol) 
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struct solution wsol; '* This function detetmines the quasigradients for the number of 
pallets decision variable. Note: this function uses a FORWARD 
FINITE DIFFERENCE equation to estimate the gradient. 

*' 
struct solution tempsol; 
float x,y; 

tempsol.s6=wsol.s6; tempsol.s5=wsol.s5; tempsol.s4=wsol.s4; 
tempsol.s3=wsol.s3; tempsol.s2=wsol.s2; tempsol.sl=wsol.sI; 
tempsol.np=wsol.np; 

'* detetmine gradient direction for number of pallets *' 
x = wsol.pm; 
if «tempsol.np+pss) > max_pallets(tempsol)) 

tempsol.np = max_pallets(tempsol) + 1; 
else 

tempsol.np = tempsol.np + pss; 
y = secobLfunc_val(tempsol); 
gl = (y - x)'pss; 
if «(y - x)'pss) < 0.(0) 

htc[I] = 1; 1* set "how to change" to step forward *1 
else 

htc[l] = -1; 1* set "how to change" to step backward *1 
} 

encode_sc(config) 
int config; 

} 

1* This function encodes the decimal version of the station 
configuration into a binary number. 

*' 
int temp; 
temp = config; 
if «temp/32) = 1) { csol.s6 = 1; temp = temp - 32; } 
else csol.s6 = 0; 
if «temp/I6) = 1) { csol.s5 = 1; temp = temp - 16; } 
else csol.s5 = 0; 
if «temp'8) = 1) { csol.s4 = 1; temp = temp - 8; } 
else csol.s4 = 0; 
if «temp/4) = 1) { csol.s3 = 1; temp = temp - 4; } 
else csol.s3 = 0; 
if «temp/2) = 1) { csol.s2 = 1; temp = temp - 2; } 
else csol.s2 = 0; 
if «temp/I) = 1) { csol.sI = 1; temp = temp - 1; } 
else csol.sl = 0; 
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secnexcsolutionO 
/* This function makes the changes to the current solution 

vector according to what is in htc[I]. 
htc[l] ---> 1 up. -I down 

*/ 

save_csoIO; 1* copies csol into tsol */ 

1* set number of pallets variable for next iteration *1 
if (htc[l] > 0) 

{ 
if (max-pallets(csol) < (csol.np+pss» 

csol.np = max_pallets(csol); 
else 

csol.np = csol.np + pss; 

else 
{ 

} 

if «csol.np-pss).< 0) 
csol.np = 0; 

else 
csol.np = csol.np - pss; 

csol.pm = secobLfunc_val(csol); /* set pm of new config */ 
} 

save_csolO 

{ 

} 

1* This function saves the current solution for statistics purposes. */ 

tsol.s6 = csol.s6; 
tsol.s5 = csol.s5; 
tsol.s4 = csol.s4; 
tsol.s3 = csol.s3; 
tsol.s2 = csol.s2; 
tsol.sl = csol.sl; 
tsol.np = csol.np; 
tsol.pm = csol.pm; 

write_statsO 

{ 

/* This function writes out the necessary statistics to report the 
history of the SQG algorithm. 

*/ 

int cfg; 
fprintf(fp I. " --------------------------------------------------\n "); 
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cfg = find_confi~num(tsol); 
fprintf(fp 1, "Itemtion %d\n" ,itecnum); 
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fprintf(fpI," old: %d%d%d%d%d%d, cfg# = %d, np = %d, pm = %t\n", 
tsol.s6,tsol.s5,tsol.s4,tsol.s3,tsol.s2,tsol.sl,cfg,tsol.np, 
tsol.pm); 

fprintf(fp 1," htc[ 1 ]=%d,g l=%f,pss=%d\n" ,htc[ 1 ],g I,pss); 
cfg = find_confi~num(csol); 
fprintf(fpl," new: %d%d%d%d%d%d, cfg# = %d, np = %d, pm = %t\n\n", 

csol.s6,csol.s5,csol.s4,csol.s3,csol.s2,csol.sI,cfg,csol.np, 
csol.pm); 

init_mnd~enO 
1* This function initializes the mndom number generator *1 

{ 
int i; 
float x; 
x=O.O; 
for (i=I; k=20; i++) 

x = x + rlnumO; 
} 

int rmd_confi~num(wsol) 
struct solution wsol; 

{ 
intcf~num; 

cf~num = «(wsol.s6)*32)+«wsol.s5)* 16)+«wsol.s4)*8)+«wsol.s3)*4)+ 
«wsol.s2)*2)+(wsol.sI»; 

return cfg:..num; 
} 

float secobj_func_val(wsol) 
struct solution wsol; 

1* This function sets the objective function value. It references 
a data me containing the parameters so a normal mndom variate 
can be genemted. 

*1 

FILE *fpin; 
float mean,sdev,oprate,hrs_pecshift; 
float pro<tmte,sum; 
int config,pals,rc;;~~.i,mp,cfgnum,num_ops; 

oprate = 15.00; 
hrs-J>ecshift = 8.0; 

mp = max_pallets(wsol); 
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num_ops = wsol.s 1 +wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6; 
if «wsol.np > mp)JJ(wsol.np = O)JJ(num_ops = 0» 

{ 
legal = 0; /* illegal or infeasible number of pallets */ 
prod_rate = I; /* penalty production rate */ 

} 
else 

legal = I; 
if (legal) 

{ 

} 

if «fpin=fopen("simnorm.dat", "r"»=NULL) 
{ 

} 

printf("Cannot open SIMNORM.DAT file !!\o\o"); 
exit(1); 

cfgnum = find30nfi!Lnum(wsol); 
fscanf(fpin,"%f%f%d%d\o",&mean,&sdev,&config,&pals); 
while«config != cfgnum)lI(pals != wsol.np» 

fscanf(fpin, "%f%f%d%d\o" ,&mean,&sdev,&config,&pals); 
fcIose(fpin); 
/* create a normal random variate * / 
sum = -6.0; 
for (i=l; k=12; i++) 

sum = sum + rlnumO; 
prod_rate = (sum * sdev) + mean; 

if «num_ops = O)II(wsol.np = 0» 
{ 

} 

num_ops = 10; /* big penalty for no operator case */ 
prod_rate = I; /* another addition to the penalty */ 

pm = (oprate * hrs-J)ecshift * num_ops)/prod_rate; 
return pm; 
} 

float set_obj3unc_ val2( wsol) 
struct solution wsol; 

{ 

/* This function sets the objective function value. It references 
a data me containing the parameters so a normal random variate 
can be generated. This returns the performance measure with 
the pm2 definition. 

*/ 

ALE *fpin; 
float mean,sdev,oprate,hrs-J)ecshift; 
float prod_rate,sum,rr,penalty; 
int config.pals,legal,i,mp,cfgnum,num_ops; 

oprate = 15.00; 
hrs_pecshift = 8.0; 
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mp = mrucpallets(wsol); 
num_ops = wsol.sl+wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6; 
if «wsol.np > mp)lI(wsol.np = O)II(num_ops == 0» 

{ 
legal = 0; 1* illegal or infeasible number of pallets *1 
prod_rate = 1; 1* penalty production rate *1 

} 
else 

legal = 1; 
if (legal) 

{ 

} 

if «fpin=fopen("simnorm.dat", "r"»=NVLL) 
{ 

} 

printf("Cannot open SIMNORM.DAT file !!\n\n"); 
exit(l); 

cfgnum = fiod_confi~num(wsol); 
fscanf(fpio, "%f%f%d%d\n" ,&mean,&sdev ,&coofig,&pals); 
while«config != cfgnum)lI(pals != wsol.np» 

fscanf(fpio,"%f%f%d%d\n",&mean,&sdev,&config,&pals); 
fclose(fpin); 
1* create a normal random variate *1 
sum = -6.0; 
for (i=I; k=12; i++) 
sum = sum + rlnumO; 

prod_rate = (sum * sdev) + mean; 

if «num_ops = O)II(wsol.np = 0» 
{ 
num_ops = 10; 1* big penalty for no operator case *1 
prod_rate = I; 1* another addition to the penalty *1 

} . 

rr = prod_rate/req; 1* set requirement ratio *1 
if (rr<=l.O) penalty = (upel * (req - prod_rate»/prod_rate; 
else penalty = (upe2 * (prod_rate - req»/prod_rate; 
pm = (oprate * hrs_pecshift * num_ops)/prod_rate; 
pm = pm + penalty; 
return pm; 
} 

float set_obj_func_ val3(wsol) 
struct solution wsol; 

{ 

1* This function sets the objective function value. It references 
a data file containing the average production rate. This returns 
the performance measure with the pm2 definition. 

*1 

FILE *fpin; 
float oprate,hrs_pecshift; 
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float pro<Crate,rr,penalty; 
int config,pals,legal,i,mp,cfgnum,num_ops; 

oprate = 15.00; 
hrs_per_shift = 8.0; 

mp = max_pallets(wsol); 
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num_ops = wsol.sl +wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6; 
if «wsol.np > mp)lI(wsol.np = O)II(num_ops = 0» 

{ 
legal = 0; 1*. illegal or infeasible number of pallets *1 
prod_rate = 1; 1* penalty production rate *1 

} 
else 

legal = 1; 
if (legal) 

{ 

} 

if «fpin=fopen("simavg.dat", "r"»=NVLL) 
{ 

} 

printf("Cannot open SIMA VG.DAT file ! !\o\o"); 
exit(l); 

cfgnum = find_confitt-num(wsol); 
fscanf(fpin,"%f%d%d\n",&prod_rate,&config,&pals); 
while«config != cfgnum)lI(pals != wsol.np» 

fscanf(fpin, "%f%d%d\n" ,&prod_rate,&config,&pals); 
fclose(fpin); 

if «nuncops = O)II(wsol.np = 0» 
{ 

} 

num_ops = 10; 1* big penalty for no operator case *1 
prod_rate = I; 1* another addition to the penalty *1 

rr = prod_rale/req; /* set requirement ratio */ 
if (rr<=1.0) penalty = (upel * (req - prod_rate»/prod_rate; 
else penalty = (upe2 * (prod_rate - req»/prod_rate; 
pm = (oprate * hrs_peCshift * num_ops)/prod_rate; 
pm = pm + penalty; 
return pm; 
) 

int max-pallets(wsol) 
struct solution wsol; 

{ 

1* This function calculate~ UJ;; diaximum number of pallets allowed 
for a given configuration number. The absolute maximum number 
of pallets is 31. 

*1 

int xl,x2,i,num_sta_op,laststa,maxpals; 
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num_sta_op = wso1.s6 + wso1.s5 + wso1.s4 + wso1.s3 + wso1.s2 + wso1.s1; 
laststa = 0; 
laststa = wso1.s1 = 1 ? 1 : laststa; 
laststa = wsol.s2 = 1 ? 2 : laststa; 
laststa = wsol.s3 = 1 ? 3 : laststa; 
laststa = wso1.s4 = 1 ? 4 : laststa; 
laststa = wsol.s5 = 1 ? 5 : laststa; 
laststa = wso1.s6 = 1 ? 6 : laststa; 
x2= 10; 
switch(laststa) 

{ 
case 6: xl = 10; 

break; 
case 5: xl = 8; 

break; 
case 4: xl =7; 

break; 
case 3: xl =6; 

break; 
case 2: xl =4; 

break; 
case 1: xl = 2; 

break; 
case 0: xl = I; 

break; 
} 

maxpals = (2*num_sta_op) + xl + x2; 
if (maxpals = 32) maxpals = 31; 
return maxpals; 
} 

modify _pssO 
1* This function modifies the pallet step size *1 

{ 
floatmpss; 
mpss = (rp * pss); 
if (mpss < 1.00) mpss=mpss+ 1.0; 
pss = (int)mpss; 1* truncates the float to an int *1 

} 
sorCby-pmO 

1* This function sorts pm_arrayOO in ascending order 
by performance measure (pm). A simple bubble sort 
algorithm is used to sort pm_arrayOO. *1 

int done,swaps,i; 
float temp_sc,temp_np,temp-pm; 

done = 0; 1* not done sorting yet *1 
while (done != 1) 

{ 
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} 
} 

swaps=O; 
for (i=I; k=(popsize - 1); i++) 

{ 

} 

if (pm_array[i+ 1][3] < pm_array[i][3]) 
{ 

} 

swaps++; 
temp_sc = pm_array[i][I]; 
temp_np = pm_array[i][2]; 
temp-pm = pm_array[i][3]; . 
pm_array[i][I] = pm_array[i+ 1][1]; 
pm_array[i][2] = pm_array[i+l][2]; 
pm_array[i][3] = pm_array[i+I][3]; 
pm_array[i+l][l] = temp_sc; 
pm_array[i+l][2] = temp_np; 
pm_array[i+I][3] = temp_pm; 

if (swaps = 0) done = 1; 
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outpucpm_arrayO 

{ 

1* This function outputs the pm_arrayDD contents into 
TAOUT2.DAT. Note that the contents of pm_arraYDD 
have been sorted. *1 

FILE *fpo2; 

int i; 
float sumfit; 

if {(fpo2=fopen("taout2.dat", "w"»=NULL) 
{ 

} 

printf("Cannot open TAOtm.DAT file !!\n\n"); 
exit(I); 

sumfit = 0.0; 
-I*for (i=l; k=popsize; i++)*1 
for (i=I; k=20; i++) 

} 

{ 

} 

fprintf(fpo2,"sc = %3.0f, np = %3.0[, pm = %1O.6fu1", 
pm_array[i] [1],pm_array[i] [2],pm_array[i] [3]); 

sumfit = sumfit + pm_array[i][3]; 

fprintf(fpo2, "sum of top 20 PMs = % 15.6fu1" ,sumfit); 
fclose(fpo2); 

float rlnumO 1* random number generator *1 
{ 
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} 

float ran_Dum; 
seedl = (seedl*2l25) + 1; 
if (seed 1 < 0) 
seedl = seed 1 + 2147483647 + 1; 

ran_Dum = seed1l2147483647.0; 
return ran_Dum; 
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