
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1993

Tandem application of a genetic algorithm and
stochastic quasigradient method to the
optimization of an assembly system
Kraig Alan Downs
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Industrial Engineering Commons, and the Manufacturing Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Downs, Kraig Alan, "Tandem application of a genetic algorithm and stochastic quasigradient method to the optimization of an
assembly system" (1993). Retrospective Theses and Dissertations. 17325.
https://lib.dr.iastate.edu/rtd/17325

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/301?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/17325?utm_source=lib.dr.iastate.edu%2Frtd%2F17325&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Tandem application of a genetic algorithm and

stochastic quasigradient method to the optimization of

an assembly system

by

Kraig Alan Downs

A Thesis Submitted to the

Graduate Faculty in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Department: Industrial and Manufacturing Systems Engineering
Major: Industrial Engineering

Signatures have been redacted for privacy

iversity
Ames, Iowa

1993

www.manaraa.com

ii

. TABLE OF CONTENTS

ACKNOWLEDGEMENTS vii

1. ~ODUCTION 1

2. REVIEW OF RELEVANT LITERATURE 6

2.1. Optimization Techniques for Stochastic Systems 6

2.2. Genetic Algorithms in Optimization 8

2.2.1. Literature on the development and description of genetic 8
algorithms

2.2.2. Literature on the application of genetic algorithms 12

2.3. Stochastic Quasigradient Methods in Optimization 15

2.3.1. Theoretical development of SQG 15
2.3.2. Applications of SQG 16

2.4. Optimization of Assembly Systems 18

2.4.1. Asynchronous automatic assembly systems 18
2.4.2. Asynchronous flexible assembly systems 19
2.4.3. Special cases of asynchronous assembly systems 19

2.5. Hybrid Stochastic Optimization Methods 20

2.6. Summary of Literature 21

3. SYSTEM DESCRIPTION 24

3.1. Description of Actual System 24

3.2. The Simulation Model 27

3.2.1. Formulation of prot~.C~I and objectives 28
3.2.2. Clearly define the data to be collected 29
3.2.3. Collect system parameter data and validation data 29
3.2.4. Building the simulation model 30
3.2.5. Verification of the simulation model 32

www.manaraa.com

iii

3.2.6. Validation of the simulation model

3.3. Jam and Reject Rates

3.4. Swulation Output

4. DESCRIPTION OF ALGORITHMS

4.1. The Genetic Algorithm

4.1.1. A general description of genetic algorithms
4.1.2. The genetic algorithm in this research

4.2. Stochastic Quasigradient Methods (SQG)

4.2.1. Objective function formulation
4.2.2. The operation of SQG
4.2.3. SQG algorithms used in this research

4.2.3.1. SQG 1
4.2.3.2. SQG2
4.2.3.3. SQG3
4.2.3.4. SQG4

4.3. The Tandem Algorithm

4.4. Production Data from Simulation

4.5. Performance Measures

4.6. Penalty Functions

5. RESULTS FROM ALGORITHM COMPARISONS

5.1. Setting Algorithm Parameters

5.1.1. Determining the GA's operating parameters
5.1.2. Determining SQG1's operating parameters
5.1.3. Determining SQG2's operating parameters
5.1.4. Determining SQG3's operating parameters
5.1.5. Determining SQG4's operating parameters
5.1.6. A summary of chosen operating parameters

33

35

36

37

37

37
39

41

41
42
44

44
45
45
46

46

47

48

50

51

51

52
.56
58
59
61
62

www.manaraa.com

iv

5.2. Comparing the Optimization Algorithms 63

5.2.1. Algorithm comparison by the best performance measure 64
5.2.2. Algorithm comparison by configuration of optimal solution 66
5.2.3. Algorithm comparison by computer run time 67

5.3. General Observations Concerning the Optimization Algorith~s 69

6. CONCLUSION 70

REFERENCES 74

APPENDIX A - EVAPORATOR ASSEMBLY SYSTEM SIMULATION, 79
SIMAN MODEL FILE

APPENDIX B - EVAPORATOR ASSEMBLY SYSTEM SIMULATION, 92
SIMAN EXPERIMENT FRAME

APPENDIX C - TANDEM ALGORITHM MASTER PROGRAM, 97
C SOURCE CODE

APPENDIX D - TANDEM ALGORITHM SLAVE PROGRAM, 99
IMPLEMENTATION OF A GENETIC ALGORITHM,
C SOURCE CODE

APPENDIX E - TANDEM ALGORITHM SLAVE PROGRAM, 114
IMPLEMENTATION OF A SQG METHOD,
C SOURCE CODE

www.manaraa.com

v

LIST OF FIGURES

Figure 3.1 Top view of evaporator assembly system 25

Figure 4.1 The operation of the genetic algorithm (Goldberg 1989) 39

Figure 5.1 Population size vs. average response 54

Figure 5.2 Significance groupings for population sizes 55

Figure 5.3 Number of generations vs. average response 56

Figure 5.4 Significance groupings for stopping iterations 58

Figure 5.5 Significance groupings of algorithm performance according 65
to the best performance measure

www.manaraa.com

vi

LIST OF TABLES

Table 3.1 System time parameter distributions and values (all times 30
in seconds)

Table 3.2 Time of day event schedule (all times in seconds) 31

Table 3.3 Model validation data (all times in seconds) 34

Table 5.1 GA parameter factorial experiment results 53

Table 5.2 ANOV A summary from population size experiment 54

Table 5.3 ANOV A summary from run length experiment 56

Table 5.4 SGQ 1 operating parameter experiment results 57

Table 5.5 ANOV A summary for stopping iteration experiment 58

Table 5.6 SQG2 operating parameter experiment results 59

Table 5.7 SQG3 operating parameter experiment results 60

Table 5.8 ANOV A summary for stopping iteration of SQG3 experiment 61

Table 5.9 SQG4 operating parameter experiment results 62

Table 5.10 A summary of operating parameter settings for GA based 62
algorithms

Table 5.11 A summary of operating parameter settings for SQG based 63
algorithms

Table 5.12 ANOV A summary for the comparison of the 5 optimization 65
heuristics

Table 5.13 Mean values of the best performance measures for 10 replications 65

Table 5.14 System configuration information from optimal solutions 67

Table 5.15 Comparison of algorithms according to computer run time 68

www.manaraa.com

vii

ACKNOWLEDGEMENTS

I would like to thank Dr. Doug Gemmill for his guidance throughout this

research. His help made the process of completing my thesis go very smoothly.

I would like to extend my thanks to the staff at Ford Refrigeration and Electronics

for their cooperation. I especially thank John Marlin and AI Kleave for their time and

effort during my data collection phase.

This research would not have been possible it were not for my parents. You have

always provided me with everything I have ever needed and have always been there

during the rough times. I will always be grateful for all you have done for me.

I purposely left the final thanks for the most deserving, my wife Joni. Nearly

four years ago you made a vow to stand beside me while I pursue my dreams and

aspirations. You not only managed to be supportive, but you also made real strides in

your own career. I am eternally in your debt for all your sacrifices and support during

this research and throughout my college years.

www.manaraa.com

1

1. INTRODUCTION

Manufacturing is an important part of the U.S. economy. The bureau of Labor

Statistics reports that about 18 million Americans are employed in manufacturing

(Schloemer 1992). It was estimated that in the late 1980's manufacturing-linked U.S.

employment fell in the 40 to 50 million range (Schloemer 1992). These figures clearly

show the importance of manufacturing in the U.S. economy.

The resulting activity of manufacturing can be classified into either fabrication or

assembly. All manufacturing firms perform fabrication, assembly, or both. It was

estimated that in the U.S. about eight million are employed in the area of manufacturing

processes associated with product assembly (Liu and Sanders 1988). The degree to

which assembly occurs can vary tremendously. For example, an automobile requires

considerable more assembly than an office chair. In any case, a great number of products

produced by manufacturing firms require assembly. Usually, the more complex the

product the more that assembly becomes a process issue. The importance of assembly is

clearly illustrated in a recently proposed approach to product design (Nevins and

Whitney 1989). Nevins and Whitney propose a strategic approach to product design in

which all concurrent design activities are centered around the determination of assembly

sequences and the choice of assembly systems. Nevins and Whitney's approach parallels

the hot topic of design for assembly (DF A). The important point to keep in mind about

DFA is it recognizes that assembly must be considered at an early stage to insure proper

product function, quality, and manufacturability. The discussion above clearly points out

the importance of assembly in manufacturing.

Assembly systems can be described by classifying their main components. An

assembly system is generally composed of two main parts: the assembly process ~d the

www.manaraa.com

2

transfer mechanism. The assembly process can be further be divided into the three

distinct areas listed below (Groover 1987):

1. Manual single-station assembly
2. Manual assembly line
3. Automated assembly

Manual single-station assembly involves one workplace with one or more workers

assembling a product. This method is common among low-volume or highly complex

products. Manual assembly line arrangements have workers in a line each contributing

something to the assembly of a given product. Automotive assembly is often performed

using this assembly process. The third assembly process classification, automated

assembly, is simply assembly performed by automatic equipment.

The transfer mechanism refers to the means by which assemblies or

subassemblies are moved to, between, or away from assembly stations. Transfer

mechanisms are nothing more than material handling systems specifically setup to

accommodate a given assembly process. These mechanisms can be further classified as

either manual or automated. Manual transfer requires that workers physically move the

assemblies or subassemblies from one location to another. Automated transfer is

accomplished by using some type of conveyor system. Automated transfer mechanisms

are even further subdivided into continuous, synchronous, or asynchronous. In

continuous transfer, the worker or the automatic machine must perform the proper

operation while the assemblies or subassemblies are moving. Synchronous transfer is

characterized by the flow of assemblies or subassemblies occurring simultaneously at

specific points in time. Asynchronous transfer occurs when an assembly or subassembly

is moved as soon as processing is finished. The continuous and synchronous methods

have maximum production rates equal to the rate of the transfer mechanism. The

asynchronous method's production rate is not as easily determined. The pr~duction rate

www.manaraa.com

3

in the asynchronous transfer case can be affected by blocking and starving.

Asynchronous transfer can allow more effective use of the stations where operations

occur; however, this added flexibility can introduce additional stochastic effects, not

found in synchronous systems.

To better understand transfer mechanisms it is necessary to make a distinction

between open and closed systems. An open system is one in which items travel along

some path that has definite beginning and ending points. The closed system is analogous

to a loop: products, carriers, and/or flXtures travel along a closed path. One key feature

of the closed loop configuration is that the components, subassemblies, or assemblies are

introduced into the loop at some point and usually exit before traveling the entire

distance of the closed path. The closed loop configuration is especially useful for

recirculating fixtures or carriers and also for recirculating items to specific locations in

the system.

Analysis of assembly systems has traditionally been divided into three different

categories. These categories are deterministic models, queueing theory models, and

simulation. Deterministic modeling involves extensive data collection and analysis: the

goal is to develop equations which predict the behavior of the system. Queueing theory

concerns itself with the mathematical analysis of customer-server type relationships.

Some major issues in queueing theory are service times, queue lengths, and server

utilization (Gross and Harris 1985). Simulation involves the development of a model

having similar characteristics as the system of interest Simulation is often performed on

a computer, allowing the collection of queueing theory type statistics. Deterministic

modeling works well in the analysis of deterministic systems. However, very few

systems are actually deterministic. It is possible to use deterministic modeling on

systems that contain stochastic elements, but model development can be extremely

www.manaraa.com

4

difficult and always produces "case specific" models. Queueing theory is limited in

application by the complexity of the system of interest. If the system being modeled has

a simple server-customer relationship, queueing theory can often be applied quickly and

effectively. Also, queueing theory allows for stochastic elements (e.g. probabilistic

service and customer arrival times). Obviously, many systems involve much more than

simple server-customer relationships. Blocking and starving effects are examples of

factors that make queueing theory analysis somewhat ineffective. Simulation is the most

effective of the three modeling techniques to properly incorporate the complicated effects

of blocking and starving in stochastic systems. A major reason for using simulation to

model complex systems, is to enable the application of optimization techniques.

Optimization can be thought of as the a process which seeks to improve

performance towards some optimal point or optimal parameter set (Goldberg 1989). For

the purposes of this research, optimization implies the search for the set of operating

parameters which gives the most desirable performance measure value, while not

violating given system constraints. There are three basic approaches to the search for ~

optimum solution: gradient methods, enumerative methods, and random search methods

(Goldberg 1989). Gradient methods involve fmding minimum or maximum values using

slopes or derivatives. These methods are reasonably effective for well-behaved functions

or systems. Well-behaved refers to a continuous function having relatively few local

minima or maxima. Enumerative methods can simply be described as the evaluation of

all possible combinations of systems parameters. For some smaller systems this

approach is feasible; however, in many situations this is not the case. Often, time and

cost discourage the use of enumerative approaches to optimization. Random sear~:.

methods, or stochastic search methods, are intended to successfully optimize a parameter

or set of parameters in a stochastic environment. Random search methods are best

www.manaraa.com

5

represented by techniques such as simulated annealing and the genetic algorithm. These

techniques are meant to overcome the problems that gradient methods have with

"hanging up" on local minima or maxima.

This research investigates the tandem application of a genetic algorithm and a

gradient method (specifically the stochastic quasigradient method) to the optimization of

an asynchronous semi-automatic assembly system. The intent of the tandem application

is to utilize the strengths of each optimization technique. A genetic algorithm will be

used to identify the interesting features (peaks or valleys) of the response surface and the

stochastic quasigradient method will investigate the local areas around these features. A

simulation of an actual assembly system is used to obtain performance measures for

different sets of input parameters. A detailed description of the assembly system and the

simulation model is provided in Chapter 3.

www.manaraa.com

6

2. REVIEW OF RELEVANT LITERATURE

The performance or behavior of many systems is not entirely deterministic. This

includes systems for manufacturing, assembly, transportation, service, communications,

etc. Each system has unique aspects which can introduce stochastic elements at different

stages. Optimizing the performance of systems influenced by the effects of stochastic

elements has been studied in detail. Methods used for stochastic optimization are also

commonly referred to as Monte Carlo methods. The first section of this chapter briefly

describes the different techniques used in the optimization of stochastic systems. The

next two sections will review the research on genetic algorithms and stochastic

quasigradient methods respectively. The fourth section will review the work performed

on the optimization of assembly systems. The fifth section of this chapter will look into

research on hybrid optimization techniques. The final section is a general summary of

the literature as related to the research objectives of this thesis.

2.1. Optimization Techniques for Stochastic Systems

The following list provides some of the more common methods used in the

attempt to optimize stochastic systems; however, this list is by no means exhaustive.

Stochastic optimization techniques include stochastic quasigradient methods (SQG),

Robbins-Monro Algorithm, Kiefer-Wolfowitz Algorithm. response surface methodology,

and optimization homotopy. Deterministic optimization techniques that have been

adapted for use with stochastic problems include genetic algorithms and simulated

annealing. In their purest form. SQG methods, Robbins-Monro Algorithm, Kiefer­

Wolfowitz Algorithm, and response surface methodology are continuous parameter

stochastic optimization techniques (Glynn 1986), while genetic algorithms and simulated

annealing are considered to be discrete parameter deterministic optimization techniques.

www.manaraa.com

7

Optimization homotopy can be used for both discrete and continuous parameter

optimization; however, it is actaully better for continuous parameter optimization

because it assumes a continuous "path." All of these continuous parameter optimization

techniques involve gradient calculations (Glynn 1986). Working descriptions of each of

these gradient type algorithms are provided by Glynn (1986)" and Gemmill (1988). Even

though the aforementioned optimization techniques were intended for continuous

functions, there has been considerable application of these methods to discrete parameter

or discrete function problems. A later section of this chapter will specifically describe

the application of SQG to discrete parameter problems.

As previously mentioned, simulated annealing and genetic algorithms are

designed for discrete parameter optimization problems. Both of these optimization

techniques are random search algorithms based on processes found in nature: simulated

annealing - thermodynamics, genetic algorithms - natural selection (Davis 1987). The

simulated annealing algorithm recognizes a connection between statistical mechanics and

combinatorial optimization. This technique was first suggested by Kirkpatrick et al.

(1983). Statistical mechanics is the study of the behavior of large systems of interacting

components. This includes the atomic behavior of a solid in thermal eqUilibrium at a

fmite temperature (Davis 1987). Simulated annealing has been applied to a variety of

problems including computer design (Kirkpatrick et al. 1983), the traveling salesman

problem (Bonomi and Lutton 1984), the portfolio problem (Gemmill 1988), and flexible

manufacturing systems design (Lie 1991).

Genetic algorithms were formally introduced in Adaptation in Natural and

Artificial Systems (Holland 1975). These algorithms implement simple genetic

operations such as reproduction, crossover, and mutation to optimize a given set of

parameters. Genetic algorithms are based on the "survival of the fittest" concept. In

www.manaraa.com

8

nature, the most fit individuals tend to have a higher survival rate, and thus are larger

contributors to the gene pool of a given generation.

Three optimization methods have been given considerably more attention in

recent research: SQG, simulated annealing, and genetic algorithms. All three of these

methods hav~ been successfully applied to various problems. As pointed out in the

introduction, this research involves the tandem application of a random search method

and a gradient method. Both simulated annealing and the genetic algorithms are random

search techniques, and SQG is a gradient technique. For the specific assembly system

being researched, the parameter encoding process for genetic algorithms is more logical

and intuitive than that of simulated annealing. Therefore, a detailed review of pertinent

literature involving genetic algorithms and SQG is given. The reader is reminded that

heuristic versions of both genetic and SQG algorithms are used in this research. If these

two algorithms are referenced as stochastic optimization techniques, the reference is

aimed at the heuristic versions.

2.2. Genetic Algorithms in Optimization

As discussed previously, genetic algorithms operate in a similar manner to the

natural selection process. The actual mechanics of the algorithm are presented in chapter

4. The literature on genetic algorithms can be divided into two distinct categories:

algorithm development/description and applications.

2.2.1. Literature on the development and description of genetic algorithms

Holland (1975) established the application 0; L:o" adaptive characteristics of

natural systems to artificial systems. For all practical purposes, he can be considered the

founder of genetic algorithms. The mathematical foundation of genetic algorithms is laid

www.manaraa.com

9

forth in this book. He generalized the concepts of reproduction, crossover, and mutation

to explain how genetic algorithms provide a robust search in a complex solution space.

Holland made a significant contribution in the area of stochastic optimization by formally

introducing genetic algorithms.

Davis (1987) compiled a set of 13 papers into a book. These papers discuss

various issues concerning genetic algorithms and simulated annealing. There are several

relevant articles presented in this book. Davis and Steenstrup (1987) provided a concise

description of both genetic algorithms and simulated annealing. John Grefenstette (1987)

discussed the incorporation of problem-specific information into genetic algorithms. He

suggested that since genetic algorithms are not especially good for fine local searches,

one could use genetic algorithms to identify "promising" regions, and then invoke a local

search method to hone in on the optimum solution. This same point was also mentioned

by Goldberg (1989). Grefenstette used the traveling salesman problem to illustrate

several heuristic methods for population initialization. Most genetic algorithms begin

with a random initial population. The research proposed to begin with a "good" initial

population rather than a completely random one. The "good" initial population is

selected using cost information. Grefenstette concluded that heuristic information is

effective, but must be applied with caution to refrain from causing premature

convergence of the solution. Another significant paper presented in this same book is

one written by Goldberg (1987) about the behavior of simple genetic algorithms when

applied to the minimal, deceptive problem (MOP). The MOP is designed to mislead the

simple genetic algorithm away from the global optimum solution and toward sub-optimal

solution:.;. C..->ldberg concluded that the simple genetic algorithm converged across a

wide range of initial parameters; therefore, eluding the distractions presented by the

MOP.

www.manaraa.com

10

Pettey et al. (1987) suggested the use of a parallel genetic algorithm to improve

the search time in problems with large populations. In cases when the population is

small, genetic algorithms can be incorrectly constrained, in terms of the search space.

Conversely, if the population is overly large, genetic algorithms can take an inordinate

amount of time to run. The authors present a class of parallel genetic algorithms (PGA)

to overcome this problem of excessive run time. The Traveling Salesman Problem is

used as an example to illustrate a PGA. The algorithm described simultaneously

processes several generations of strings (individuals): to accomplish this, multiprocessor

technology is utilized. The authors' findings indicate that a PGA can allow for an

increased population size of a genetic search.

Richardson et a1. (1989) presented some steps to implementing penalty functions

in genetic algorithms. Mter a specific problem has been coded into a genetic algorithm,

it is not uncommon to have particular combinations of bits in the bit string be infeasible

or illegal. In this penalty scheme, these infeasible or illegal combinations are given a

substantial penalty. It is explained that historical recommendations for applying penalty

functions advised using harsh penalties for illegal solutions. By assigning a large penalty

to the performance measure of the inappropriate solution, it would be forced out of the

population. Richardson et al. (1989) advised that a well chosen, graded penalty is more

desirable than harsh penalties. He claimed that these types of penalties preserve the

information for all strings where harsh penalties do not. This concept will be revisited in

a later chapter.

Goldberg (1989) published a textbook addressing the issues of genetic algorithms.

This text provided a straightforward introduction to the history and operation of genetic

algorithms. The simple genetic operators such as crossover, reproduction, and mutation

used in the algorithm are described in detail. Goldberg included a chapter discussing the

www.manaraa.com

11

mathematical foundations, for the theorists. This text also discussed several advanced

genetic operators including dominance and abeyance. Goldberg also presented several

knowledge-based techniques that incorporate genetic algorithms: hybridization and

knowledge-augmentation are two such techniques. Hybrid schemes involve the crossing

of a genetic algorithm with a problem-specific optimization or search technique.

Knowledge-augmented techniques involve enhancing a genetic algorithm with some

"problem-specific" information. Parallel genetic algorithm schemes are also described.

Parallel genetic algorithms imply that there are several different, but parallel, generations

operating simultaneously being directed by a single master. This is analogous to a

computer network having a server. The text also spends considerable time discussing

genetic algorithms in machine learning. Goldberg's main contribution to genetic

algorithm research was threefold. First, the text provided Pascal computer code for a

simple genetic algorithm (SGA). The SGA incorporates the three fundamental genetic

operators, which are reproduction, crossover, and mutation. Second, Goldberg's text

thoroughly discussed all aspects of genetic algorithms. Finally, this text compiled a

nearly exhaustive list of references pertaining to genetic algorithms.

In 1991, Lawrence Davis published the Handbook o/Genetic Algorithms (Davis

1991). Davis presented a clear description of genetic algorithms, including history,

explanation of operation, and variations. These variations discuss hybridization of and

parameterizing genetic algorithms. Davis dedicated an extensive portion of the text to

application studies of genetic algorithms. Applications are given for aircraft design,

neur~ network architecture design, schedule optimization, and robot trajectory

generation, to name a few. Unlike any previous publications, Da\-~;:: ~.esented the coding

of genetic algorithms from an object-oriented point of view. In fact, Davis refers to his

code as the Object-Oriented Genetic Algorithm (OOGA). Overall. this book provides

www.manaraa.com

12

two significant contributions to genetic algorithm research: a large pool of case studies

involving the application of genetic algorithms and an object-oriented approach to

genetic algorithms.

2.2.2. Literature on tlte application of genetic algoritltms

There are numerous publications describing the application of genetic algorithms

to theoretical and "real-world" problems. The following section reviews some of the

applications of genetic algorithms, and mainly concentrates on research relevant to this

thesis.

One of the first applications of genetic algorithms was given by AlbertD. Bethke

at the University of Michigan (Bethke 1978). Bethke used genetic algorithms as function

optimizers. The traditional way of optimizing some multiple variable stochastic

functions was to use calculus-based methods. This article proposed the use of genetic

algorithms instead of these traditional methods. The mechanics of genetic algorithms are

presented in the context of function optimization. Bethke concluded that the genetic

algorithms are far less sensitive to noise than gradient or calculus-based methods. This is

illustrated with an example of fmding the maximum value of a bi-modal objective

function using a genetic algorithm and a gradient method.

Davis and Ritter (1987) presented an interesting optimization application using

genetic algorithms. They used genetic algorithms to optimize the performance of a

simulated annealing algorithm. The simulated annealing algorithm was used to optimize

student class schedules. Specifically, Davis and Ritter applied a genetic algorithm to

optimize the annealirif, ii ·ameters. The research concluded that the application of

genetic algorithms in this capacity was able to find better annealing parameter settings

www.manaraa.com

13

than humans found. Davis and Ritter's contribution lies in their integration of two

optimization techniques.

Glover (1987) presented an article on solving a keyboard configuration problem

using genetic algorithms. The motivation of this research is the configuration difficulties

brought about when attempting to map keyboards for the Eastern Asian languages. The

article recognized that it is difficult to apply expert systems to large combinatorial type

problems. A prototype algorithm meant to illustrate the robustness of the genetic

algorithm was proposed and tested. Glover concluded by stating that genetic algorithms

provide a robust search technique when applied with representation and operator

constraints.

Cohoon et al. (1988) tested distributed genetic algorithms on the floor plan design

problem. The floor plan design problem involves determining the optimal arrangement

of rectangular features in a given area. The particular application given is the placement

of modules in the VLSI design cycle; the objective of the placement is to minimize the

wire lengths and the weighted sum of the area. They implemented a distributed genetic

algorithm using multiple processors (referred to as GAPE). After evolving several fit

sub-populations, GAPE combines these groups into one large generation. The algorithm

then proceeds to evolve this single population. Cohoon et al. observed that GAPE

performed consistently better than applying genetic algorithms in a sequential manner.

Wellman (1991) applied a simple genetic algorithm to the optimization of buffer

allocation in a closed-loop asynchronous automatic assembly system. Wellman's

research focused on the application issues of a simple gene~c algorithm and the

algorithm's relative performance compared to the work of others. Wellman explored the

simple genetic algorithm's performance at various settings of the population size, the

crossover probability, and the mutation probability. The research compares the results of

www.manaraa.com

14

a simple genetic algorithm to the results of Liu and Sanders' (1988) work: Liu and

Sanders (1988) applied a stochastic quasigradient method to the same problem. Wellman

found that the simple genetic algorithm did not perfonn well in comparison to Liu and

Sander's SQG method. The simple genetic algorithm consumed much more computer

time than the SQG method. However, he showed that the genetic algorithm does

produce reasonable results. Wellman's work provided two important contributions to

genetic algorithm research. His fIrst contribution was the application of genetic

algorithms to the optimization of assembly systems. The other contribution was in the

comparison of the perfonnance of two different stochastic optimization methods.

Huntley and Brown (1991) applied a parallel heuristic to the quadratic assignment

problem. Their algorithm (SAGA) operated by cascading a genetic algorithm and a

simulated annealing method. The heuristic is considered parallel because of its intended

implementation using parallel computers or processors. Huntley and Brown developed

SAGA with the idea of combining decentralized characteristics of genetic algorithms and

centralized characteristics of simulated annealing methods. A genetic algorithm is used

to generate populations and then simulated annealing "matures" these populations.

Huntley and Brown concluded that SAGA perfonned favorably on two standard

problems found in the related literature. However, SAGA had a longer runtime than

some less complex algorithms. The main contribution of their work is the cascading

confIguration of SAGA. They recognized that a genetic algorithm was good for general

searches and that simulated annealing was better for local searches.

The applications of genetic algorithms given above only scratch the surface of

what is available. Some additional applications include control systems, proce"., ':..,sign

and optimization, neural networks, and machine learning.

www.manaraa.com

15

2.3. Stochastic Quasigradient Methods in Optimization

Formal stochastic quasigradient (SQG) methods were introduced by Ermoliev

(1969). They were intended to be applied to stochastic and nonlinear programming

problems. The fundamental idea of these methods is to implement statistical estimates of

function values (e.g. gradients) instead of exact function values. The published research

on SQG is reviewed in two different sections: theoretical development work and

applications.

2.3.1. Theoretical development of SQG

Ermoliev (1969) provided the foundations for SQG in an article discussing

stochastic gradients and quasi-feyer sequences. This early research considered problems

of random search and adaptive minimization. Kushner (1974) further developed SQG by

showing convergence theorems for stochastic approximation methods in finding local

minima. Gupal and Norkin (1977) presented a stochastic finite-difference method to be

used in the minimization of discontinuous functions.

Yuri Ermoliev (1983) presented a paper on using SQG methods for the

optimization of systems. SQG methods are made for solving complex stochastic

functions. Ermoliev pointed out that stochastic processes are important due to their

common existence. He reviewed recent work involving SQG methods. One significant

issue Ermoliev discussed is use of penalty functions. The minimization of a penalty

function can be a viable objective function. The author cautioned that this method of

using a penalty function may not converge under certain conditions.

Ermoliev and Gaivoronski ~::: ~) presented several SQG methods and their

respective computer implementations. They clearly illustrated each step required in the

implementation of a SQG method. Discussion of step size choice and step direction

www.manaraa.com

16

calculations were given. Several suggestions were made for determining step direction

when observations of the gradient are not available. The methods given were central and

forward finite difference approximations. They provided some guidelines on choosing

step sizes at different stages in the optimization process. They recommended the

application of SQG using an interactive approach. Ermoliev and Gaivoronski also

described a computer software package to perform SQG (STO). The STO program is

applied to practical problems; this included examples involving facility location and the

control law problem. This paper's significant contribution is in the step-by-step

discussion of the operation and implementation of SQG. Many recent applications of

SQG cite this article as providing the key explanation of the technique.

Liu (1987) provided a reasonably thorough history of the development of SQG

methods. He also provided a detailed description of the mechanics of SQG. Other

references describing the operation of SQG algorithms include (Tandiono 1991) and

(Gemmill 1988). A description of the mechanics of SQG methods is provided in Chapter

4.

2.3.2. Applications of SQG

The applications discussed in this section are relevant to this research and the

industrial engineering field in general. Unlike genetic algorithms, SQG has been applied

to the optimization of several different assembly systems. Many of the references cited

below will be discussed from an algorithm viewpoint now, and in a later section will be

presented from an assembly system viewpoint.

Liu (1987) implemented SQG to the design optimization of an asynchronous

automatic assembly system. Liu used the SQG methods as described by Ermoliev and

Gaivotonski (1984). The research indicated that using forward finite difference methods

www.manaraa.com

17

provided an acceptable alternative to central finite difference methods. Liu pointed out

several disadvantages of the SQG method. One major weakness of SQG is the difficulty

in choosing a "good" initial solution set.

Gemmill (1988) applied SQG to the portfolio problem. His research found that

SQG tends to converge to local optima instead of global optima; the starting point tends

to significantly affect the probability of converging to a local optima. Gemmill also

found the algorithm to converge rather slowly.

Liu and Sanders (1988) used the SQG method, as described by Ermoliev and

Gaivoronski (1984), for the performance optimization of an asynchronous flexible

assembly system. Both starving and blocking effects were introduced into the assembly

system model. Their research used a queueing network model to set the number of

pallets and then used an SQG algorithm to determine buffer spacing for optimal system

throughput. Liu and Sanders' method can be considered a hybrid technique. They

concluded that their queueing networklSQG algorithm produced reasonable results in a

difficult area which is serviced by very few techniques.

Tandiono (1991) presented research involving the optimization of an automatic

assembly system (AAS) from a cost perspective. She implemented SQG methods to

optimize a simulation of a given AAS. Tandiono found that by using an objective

function involving cost, SQG could simultaneously optimize the number of pallets and

buffer sizes. From the research, she discovered that SQG performance was somewhat

dependent upon step size choice. A penalty function was integrated into the optimization

procedure. Discussion warned that the penalty should be severe enough so that

inappropriate parameter sets will not be accepted as optima.

Bulgak and Sanders (1991) proposed a technique for the design optimization of

asynchronous flexible assembly systems with statistical process control and repair. Their

www.manaraa.com

18

algorithm uses a queueing network model to determine the number of pallets needed to

achieve a desired system throughput, and then applies a SQG method. They also test

their algorithm using a modified simulated annealing method instead of SQG. Bulgak

and Sanders concluded that both of their hybrid algorithms worked well in producing

optimal, or near optimal, design parameters for flexible assembly systems with

automated SPC and repair.

2.4. Optimization of Assembly Systems

This section reviews the literature involving the optimization of assembly

systems. Various pieces of literature already reviewed in this chapter have mentioned

assembly systems in the context of stochastic optimization techniques. This section will

revisit some of those same articles; however, the focus will be on the assembly system

itself.

The assembly systems used in the articles discussing stochastic optimization can

be divided into two general categories: asynchronous automatic assembly systems and

asynchronous flexible assembly systems. Several researchers used special variations of

these two general categories, and those will be discussed individually.

2.4.1. AsYllc/zrOllous automatic assembly systems

Asynchronous automatic assembly systems can be thought of as either open or

closed. This review focuses on closed AASs. These systems generally consist of a series

of workstations in which each perform partial assembly of an object. One key aspect of

these systems is the in-line or series structure. 'f':":- ~'-,ject being assembled is attached to

a pallet, and the pallet is transported from station to station via a conveyor system. Each

station houses some automated assembly process. In many cases, the operation times are

www.manaraa.com

19

considered to be constant and there are assigned jam probabilities at each station. The

most common decision variables used in the analysis of AASs are number of pallets and

buffer sizes. Those researchers that have used a basic asynchronous automatic assembly

system include Kamath and Sanders (1986), Kamath and Sanders (1987), Liu (1987),

Bulgak and Sanders (1988), Liu and Sanders (1989), Liu and Chiou (1990), Wellman

(1991), and Tandiono (1991).

2.4.2. AsYllchrOllOus flexible assembly systems

Asynchronous flexible assembly systems (AFAS) are manufacturing systems

designed to provide a high degree of automation and a high degree of flexibility. One

way to describe AFASs is as a controlled process which can assemble various parts and

products according to a determined schedule (Andreasen and Ahm 1988). The general

components of AF ASs are assembly operations, material handling systems and

components/component types (Lie 1991). The most common decision variables are

number of assembly cells, buffer spaces, and batch sizes. Individuals having done

research on the optimization of AFASs include Kamath et al. (1988), Liu and Sanders

(1989), Bulgak and Sanders (1989), Lie (1991), and Bulgak and Sanders (1991).

2.4.3. Special cases of asYllchronous assembly systems

There are two special cases of assembly systems found in the literature that are

relevant. Bulgak and Sanders (1989, 1991, 1991) implemented an asynchronous

automatic assembly system which had the unique features of an automatic test station and

a rep~ :~op. Their system configuration consisted of a double loop arrangement: one

loop contained all the assembly operations while the other loop contained a repair station.

Bulgak and Sanders used this system in three separate publications.

www.manaraa.com

20

The other special case of AASs involved a system using a tunnel-gated station

(Leung and Sanders 1986). Tunnel-gated stations were designed to lift an assembly up

off of the transfer line. Operations are performed on assemblies in the raised position,

while other assemblies are allowed to pass underneath. This type of system could be

used to implement parallel station configurations.

2.5. Hybrid Stochastic Optimization Methods

Hybrid optimization algorithms can be thought of as the integration of two

different algorithms. Hybrid schemes can also be knowledge enhanced algorithms. The

hybrid designs are created to provide better performance than either of its constituent

algorithms. The goal of hybridization is to fmd an algorithm that is more robust than

current techniques (Davis 1991). Both Goldberg (1989) and Davis (1991) suggested

hybrid schemes, described the rationale behind them, and discussed the general approach

to their creation.

As mentioned previously, Davis and Ritter (1987) constructed a hybrid stochastic

optimization technique for student scheduling. Davis and Ritter described their

technique as a probabilistic search routine combining the genetic algorithm and simulated

annealing. Their hybrid technique used simulated annealing to optimize the class

scheduling problem, while concurrently applying a genetic algorithm to optimize the

simulated annealing parameters. They determined that their algorithm was more

successful and faster at student scheduling than the people who currently perform it.

Davis and Ritter also suggested that their algorithm can be applied to other problems of

the same type.

As mentioned earlier, Liu and Sanders (1988) presented a hybrid algorithm to

optimize the system performance of flexible assembly systems. They used a queueing

www.manaraa.com

21

network model to determine the number of pallets in the system and then applied a SQG

method to determine the buffer sizes. They referred to their technique as the combined

Network-SQG method. Liu and Sanders found their algorithm performed reasonably

well on the complex problem of AFAS optimization.

Bulgak and Sanders (1991) implemented a two stage algorithm for the stochastic

optimization of asynchronous flexible assembly systems with SPC and repair. They used

a queueing network model in the fust stage to predict the number of pallets required to

meet a desired throughput. The second stage of their hybrid algorithm utilizes a

stochastic optimization technique to set buffer sizes. Bulgak and Sanders experimented

with two different stochastic optimization techniques for use in the second stage: SQG

and simulated annealing. They concluded that both versions of their hybrid algorithm

worked; however, the SQG version was computationally more efficient than the

simulated annealing version. It was also found that simulated annealing had more

potential for application to a wider variety of problem types.

The last hybrid method discussed in this review is the cascaded algorithm

proposed by Huntley and Brown (1991). As mentioned before, their heuristic used a

genetic algorithm cascaded with a simulated annealing algorithm. The genetic algorithm

is used to create good populations and the simulated annealing procedure is applied to

mature the populations. Their intention was to implement this algorithm using parallel

processors. The cascading application of two stochastic optimization techniques, as

presented by Huntley and Brown, is similar to some of the research in this thesis.

2.6. Summary of Literature

Genetic algorithms have been applied to numerous practical and theoretical

problems. Some researchers found genetic algorithms to be successful in their

www.manaraa.com

22

applications, others did not. In the attempt to find a more robust approach, some

researchers integrated specific knowledge about their particular problem into a genetic

algorithm.

In their purest form, SQO methods are intended for locating optima in a

continuous solution space. In the search for stochastic optimization techniques,

researchers found' heuristic ways to apply SQO to discrete or discontinuous solution

spaces. This opened up the application of SQO methods to a much wider field of

practical problems. Even with the ability to be applied to discrete parameter problems,

SQO methods have not been widely applied.

The research done on the stochastic optimization of assembly systems has been

almost exclusively focused on asynchronous automatic assembly systems and

asynchronous flexible assembly systems, with a few variations such as repair loops and

tunnel-gated stations. The assembly systems described in the literature were theoretical

rather than actual. However, some system features were based on actual equipment (e.g.

tunnel-gated stations).

In the absence of desired performance, researchers developed hybrid stochastic

optimization algorithms. Hybrid algorithms were created by integrating two

optimization techniques or augmenting a single technique with problem specific

knowledge. These algorithms strive to be more robust than their constituent algorithms.

The research presented in this thesis provides two new contributions to the field

of stochastic optimization. First, the simulated assembly system is a detailed

representation of an actual assembly system. This assembly system has parallel

operations and al~n J..r -; both automatic and manual stations. To the best of our

knowledge, this is the first research aimed at optimizing an assembly system with both

www.manaraa.com

23

manual and automatic stations. Second, the optimization technique involves the tandem

application of a genetic algorithm and a SQO method.

www.manaraa.com

24

3. SYSTEM DESCRIPTION

The assembly system described in this research is an actual system used by Ford

Refrigeration and Electronics (Connersville, IN) to assemble plate/fin style evaporators.

Evaporators are a vital component in the climate control system of the automobile. The

evaporator is a component which is not'readily familiar to most people. Their

unfamiliarity is due to the fact that when assembled in the automobile, the evaporator is

completely enclosed in a plastic housing. This housing is located in the rear of the

engine compartment, usually in close proximity with the fire wall. The evaporator is

responsible for removing heat from the air used to cool the passenger compartment.

Refrigerant enters the evaporator in a low pressure liquid state. As the refrigerant passes

through the platelfin network it picks up heat and changes from a low pressure liquid to a

low pressure gas. Blowers in the automobile force warm air across the platelfin network.

The boiling refrigerant removes heat from the warm air, and this air cools the passenger

compartment (Dwiggins 1978).

3.1. Description of Actual System

This assembly system is classified as a palletized asynchronous semi-automated

build line. A general overhead view is illustrated in Figure 3.1. There are four major

components to this assembly system: build stations, the vision system, core banding, and

core unloading. The pallets are designed with fixtures attached to them. The fixtures

assist the workers in properly assembling evaporators. The network of transport track is

at a single elevation: all pallets move in the same x-y plane. The complete transport

network structure is defmed by several connected segments. The conveyor ~p~' .. 'J is

essentially constant at 10.38 in/sec. This is the average speed of a loaded pallet

determined by direct observation. The transportation network is arranged in a

www.manaraa.com

N
ol

es
:

1- 2.

I
1

0

1
1

0

I
1

0

I
0

r a
U

et
s

m
o

v
e

in

a
co

u
n

te
rc

lo
ck

w
is

e
d

ir
ec

ti
o

n
.

D
ri

v
e}

I

lU
et

9
re

m
a
in

o

n

th

e

tr
a
c
k

8

9

th
e

w
o

rk
er

s
b

u
il

d
 c

o
re

s.

M
ot

or

I
1

0
-

T
h

is

tr
a
c
k

se

e
m

e
n

t
is

n

o
t

u
se

d

0
8

0

0 ·0
8

B
u

il
d

S

ta
ti

o
n

S
O

0 ·O

B

B
ui

ld

S
ta

ti
o

n

8
0

 fe
ed

tr

a
c
k

 8
0

·
0

 re
tu

rn

tr

a
c
k

O

·0
8

B
u

il
d

S

ta
ti

o
n

·0
8

B
u

il
d

S

ta
ti

o
n

8
0

·
0

·0

8

B
u

il
d

S

ta
ti

o
n

0
1

·
0

·0

1

B
u

il
d

S

ta
ti

o
n

I 1 1

C
or

e
U

ft

I·

I
B

L
J

U
n

lo
ad

R
o

u
n

d

P
al

le
t

S
to

p
,

I
I

u
n

lo
ad

10

01
>

I
I

V

I
I

/

V
is

io
n

P
re

al
ig

n

S
y

st
em

8
II

·
n

 .
..

_
-,

, _
_

F
ig

ur
e

3.
1

T
op

 v
ie

w
 o

f e
va

po
ra

to
r a

ss
em

bl
y

sy
st

em

1"
. 0

I I

tv

V
I

www.manaraa.com

26

rectangular configuration, as shown in Figure 3.1. The structure is such that pallets move

throughout the system in a counterclockwise direction. Pallets move strictly in straight­

line motion, there are no arc type motions. As a pallet is being transported by a

conveyor, it will eventually reach the end of the current segment. When this occurs,

pallets are raised by mechanisms referred to in this research as lifts. These lifts transport

pallets from one conveyor segment to another. Pallets are never rotated: when they tum

90° comers, the pallets remain oriented in the same direction. Upon completion of

assembly, the pallet (with attached evaporator core) is released. The pallet moves from

the build station onto the return track. Once on the return track, the pallet moves towards

the unload loop. During the pallet's stay on the unload loop, it must visit four different

automatic stations: vision prealign, vision inspection, bander, and core unload. These

stations are visited in the order given, without exception. During the first stop, vision

prealign straightens the assembled evaporator core, readying it for the vision inspection.

Upon arrival at vision inspection, the evaporator core is compressed. The vision system

then takes several fIXed perspective snapshots of the core. This station's purpose is to

identify any problems due to incorrect assembly, damaged components, or missing

components. The system determines whether the evaporator core is a reject and then

encodes this information on a programmable chip located on the pallet. The next station

is banding. The evaporator core is banded only if the vision system accepted it. The

banding process begins by first compressing the evaporator core and then securing it in

the compressed form using a pair of metal bands. This compressed form is necessary for

a joining process used in the next stage of manufacturing. After the banding station, the

pallets (with assembled evaporator cores) travel to the unload station. There are

proximity sensors at the unload station which detect the presence of the metal bands. If

the metal bands are present, a robotic ann removes the evaporator core from the fixtured

www.manaraa.com

27

pallet. If the proximity sensors do not detect metal bands, the evaporator core will

remain on the pallet. The empty pallets are circulated back to the build stations. The

pallets containing rejected evaporator cores are sent back to the station in which they

were assembled. Pallets, both empty and those containing rejected evaporator cores,

travel back to the build stations via the feed track. The feed track is analogous to a

multiple-opening gravity feed bin; it is a one-way non-recirculating conveyor. As

pallets move down the feed track, they may be sent into a build station if needed.

Otherwise, the pallets continue down the feed track towards build station 6.

The conveyors in this system are set up using zones. Since pallets are moderately

heavy, their travel around the system must be regulated to prevent both excess weight in

concentrated areas and pallet collisions. Zones are established by holding pallets at

designated stops according to a pre-established set of rules. Another important feature of

the conveyor system is located at each 90° bend in the track system. When a pallet

encounters a 90° bend, a lift raises the pallet up and transfers it to the next conveyor

segment. Zone logic is such that pallets will not collide on a lift. Collision on a lift

could cause damage to the conveyor system. There are many intersections in the track

network structure. These intersections are carefully controlled to prevent pallet

collisions. Most intersections are governed on first-come-first-serve basis, except in the

case when a rejected evaporator is being routed back to its builder. In this special case,

the rejected core has priority at intersections.

3.2. The Simulation Model

To enable performance analysis of stochastic optimization techniques, a

simulation model was developed for the system described in section 3.1. It was

impossible to use the actual evaporator core build system to test the stochastic

www.manaraa.com

28

optimization methods. The simulation was developed using SIMAN, a commercial

simulation package from Systems Modeling Corporation. Observation of the actual

system was used to determine system parameters for the simulation model. A

considerable amount of effort was put into collecting system parameter data. Since all

necessary information was provided or could be collected, the simulation model

incorporated as much detail as possible. A modified version of the approach to

conducting a simulation study, as presented by Law and Kelton (1991), was used to

create the simulation model. The steps are listed below.

1. Formulation of problem and objectives.
2. Clearly define the data to be collected.
3. Collect system parameter data and validation data.
4. Building the simulation model.
5. Verification of the simulation model.
6. Validation of the simulation model.

Some of the steps in the above list required several iterations to complete.

3.2.1. Formulatioll of problem alld objectives

The objective of this study was to create a simulation model of adequate detail so

that stochastic optimization techniques could be tested for their effectiveness in setting

the decision variables at optimum levels. As mentioned earlier, a high level of detail is

used so the simulation is as representative of the actual system as possible. This

assembly system has many places where stochastic elements can directly affect

performance. This makes the system an ideal candidate for the application of stochastic

optimization methods. It was also at this stage of the study that Ford Refrigeration and

Electronics provided the authorization to stu~J u~\! system and freely collect any

necessary data.

www.manaraa.com

29

3.2.2. Clearly define the data to be collected

The system had to be studied carefully to completely understand all the data that

needed to be collected. A clear picture of the starting and stopping points of various data

being collected was essential. The length of each operation is defined by the time the

pallet stops at the station until the time the pallet is released. The necessary data included

core building times, vision prealign times, vision system times (both good and rejected

cores), banding times, core unload times, and conveyor speed.

3.2.3. Collect system parameter data and validation data

The data for the system were collected by direct observation using a stopwatch.

All data were collected and analyzed in seconds. The number of observations for each

specific parameter varies due to some parameters occurring infrequently. The ultimate

goal of data collection was to determine the distributions for each of the system

parameters. The advantages of using distribution· functions for operation times, rather

than empirical data is twofold: values for the data are not restricted to only those of the

observations and there are no minimum or maximum values as in empirical distributions

(Law and Kelton 1991). Having collected large enough samples from which to draw

conclusions, Kolmogorov-Smirnov tests were then applied to each data set. The tests

were conducted at an a level of 20% (Mullin 1990). The resulting distributions are

shown in Table 3.1.

As illustrated in Table 3.1, there are five different stochastic variables within the

simulation model and several are found in more than one place. These stochastic

c!;;;Jents along with starving and blocking effects support the initial decision to model

the system using simulation.

www.manaraa.com

30

Table 3.1 System time parameter distributions and values (all times in seconds)
Parameter Distribution Distribution Shift to be Mean
Description

New Core Build

Rejected Core Fix

Vision Prealign

Core Banding
Vision System
(accepted core)
Vision System
(rejected core)
Accepted Core

Unload

Erlang

Exponential

Erlang
Constant
Erlang

Uniform

Constant

Parameters Added Value

k = 3, /3= 6.013

/3= 50.461

k = 3, /3= 0.111
Jl= 5.94, s = 0.061

k = 8, /3= 0.072

a = 8.21, b = 9.00

Jl= 4.98, s = 0.090

49.77 67.81

18.88 50.46

3.31 3.64

5.26
5.94
5.84

8.61

4.98

The data needed for validation were not collected at the same time as parameter

data. This was not a wise choice, but was inescapable due to time and distance

constraints. The actual data used in the validation of the simulation model will be

presented in a later section.

3.2.4. Buildillg the simulation model

The system is modeled using a terminating, discrete-event simulation. There are

definite starting and stopping points in time that define the system. These points are

events such as the start of the shift, the beginning of break periods, the ending of break

periods, and the ending of the shift.

The simulation of the system is divided into five general parts: the feed track

section, the build station section, the return track section, the unload loop section, and the

daily schedule section. When an entity (pallet) is in the feed track section, it will enter

one of the build stations. The exact station a given entity will enter is completely

dependent on the specific situation. Once an entity enters a specific build station section,

it is delayed to represent the transport time. Eventually the entity will be delayed by

www.manaraa.com

31

either a new build time or a rejected core ~x time. The next stage of the simulation is the

return track section. This section handles the motion of the entities from the exit of the

build station section to the beginning of the unload loop section. The return track section

is analogous to an interstate with several on-ramps where the build stations represent

these on-ramps. Entities travel out of the return track section into the unload loop

section. In the unload loop, entities experience a series of delays. Entities are delayed

for transport time, vision prealign, vision inspection, banding, and unloading. After

finishing with the unload loop section, entities reenter the feed track section.

The daily schedule section of the simulation is responsible for causing events to

occur at specific times during the shift. The entire simulation is based on seconds;

therefore, the simulated shift is dermed by events occurring at some number of seconds

from time zero. Time zero is referred to as the start of the shift. The schedule of events

that the daily schedule section handles, as referenced from time zero, is given in Table

3.2.

The simulation model uses basic SIMAN structures to model the evaporator

assembly system. As mentioned previously, round pallet stops provide holding functions

Table 3.2 Time of day event schedule (all times in seconds)
Event Description Beginning Time Ending Time

Initialization 0 1,000
Working 1,000 6,400

Break time 6,400 7,180
Working 7,180 13,600

Break time 13,600 14,380
Working 14,380 18,700

Lunch time 18,700 20,800
Working 20,800 26,200

Break time 26,200 26,980
Working 26,980 29,500

Initialization for next 29,500 31,500
shift

www.manaraa.com

32

to establish the zoning effect. These round pallet stops are modeled using Queue blocks.

Each build station, the vision prealign, the vision inspection system, the bander, and the

core unload are all represented in the simulation model as resources. To simulate a pallet

entering the station, an entity must seize the specific resource. Delay statements are used

to represent travel times and process times. Branch statements perform the transfer of

control from section to section. The lifts are treated as variables. The variable for a

specific lift must be equal to zero in order for an entity to access it. Scan statements

establish the control logic. In order to induce the occurrence of an event at a particular

time, a dummy entity is created, used to set some variables, and then disposed. This is

the process that takes place to indicate to the simulated system that the workers are on

break. As shown, the simulation is constructed of basic SIMAN blocks and elements.

The simulation model was built using a direct approach. This meant trying create

a one-to-one correspondence between the actual system and the simulation model. This

approach seemed to be the most effective and efficient method at the outset of the

research; however, it proved to be quite inefficient in terms of computer run time. There

are a number of Scan statements used in the simulation. Scan statements combined with

the large size of the model, causes the run time to be longer than desired. In the worst

case, one replication (the simulation of one shift) can take about 4.5 minutes on a

486DX33 class microcomputer.

3.2.5. Verification of the simulation model

The process of verifying the model was much easier, since the simulation was

developed in SC:-'~; :-';".s. By developing the simulation in sections, entity flow could be

easily followed. The key to proper model verification is to have a complete

understanding of the system being simulated. The evaporator assembly system being

www.manaraa.com

33

simulated in this research is governed by an extensive array of ladder logic.

Understanding the resultant series of events when an entity encounters a busy or a vacant

intersection is absolutely necessary. Verification of the simulation model also requires

that the programmer become quite familiar with the simulation language.

3.2.6. Validation of tlte simulation model

In the ideal case, the data used for validation of the simulation model are

collected simultaneously with the system parameter data. As mentioned before, this was

not possible. Therefore, the validation data were collected about 10 months after that of

system parameters. To compare the simulation of the evaporator assembly system with

the actual system, several different statistics were utilized. The statistics used in the

verification data by no means represent all possibilities; these statistics were perceived as

being important to this particular system. Table 3.3 summarizes the results of model

validation. The entries in Table 3.3 describing the system configurations are interpreted

as (st6,st5,st4,st3,st2,stl,np) where st variables refer to the status of the respective build

stations and np stands for the number of pallets. A st variable of 1 means that a worker is

assembling evaporator cores at that station, and a st value of 0 implies to no worker is

present.

Note in the Table 3.3 that production rate (on a shift basis) is not used as a

validation statistic. The workers building evaporator cores have standards to meet. Once

a given worker meets his or her standard, they will stop building evaporator cores. This

feature was not included in the simulation. The simulation portrays the workers building

cores until the end of the shift.

As shown in Table 3.3, the mean value from the simulation is contained within

the 95% confidence interval for six out the nine statistics. However, items 5, 6, and 8

www.manaraa.com

34

Table 3.3 Model validation data (all times in seconds)
Statistic System Config. Simulation

Mean
Pallet cycle time (1,1,1,1,0,0,22) 16.94
Pallet cycle time (0,1,1,1,0,0,19) 22.79
Pallet cycle time (0,1,1,1,0,0,19) 22.79
Pallet cycle time for station 3 300.38

only
Pallet cycle time for station 4 334.94

only
Pallet cycle time for station 5 376.56

only
Pallet cycle time for station 6 526.16

only
Pallet travel time in unload loop 85.28
Pallet cycle time (1,1,1,1,0,0,22) 372.66

(for specific
pallets)

95% CI for Actual
Data

(14.01,17.13)
(18.63,23.89)
(19.42,23.72)

(175.48,494.08)

(254.45,311.75)

(274.04,320.38)

(372.96,557.50)

(83.29,83.77)
(366.2,404.74)

show that the simulated mean is not contained within the 95% confidence interval of the

actual validation data. There are several explanations for this problem. One possible

explanation could be that the validation data were collected 10 months after the system

parameter data. During validation data collection time, no major changes were observed.

However, to be sure operation times did not change over the 10 month gap, the system

parameters would have to be retimed. This is the exact reason why validation data

should be collected at the same time as system parameter data. Another possible

explanation for the differences is the fact that the workers during the two data collection

times were completely different people. The average evaporator build time could have

changed because of this.

Due to time constraints, the validation data were collected in a small period of

time. This could provide another possible explanation for the difference between

statistics. Since the time period in which the validation data were collected was very

www.manaraa.com

35

small, it is quite possible that the validation data is not representative of what one would

observe over the course of an entire shift One last possible reason for differences could

be attributed to problems in the simulation model; however, the model was checked

thoroughly and was operating as intended.

Table 3.3. also indicates a tendency for the mean simulation data to be larger than

the mean validation data. This tendency is probably explained by the previously .

mentioned 10 month data collection gap. It could also be explained by the possibility of

the actual system having faster conveyor speeds than the simulation. In any case, the

validation data shows that the simulation model is representative enough to make

analysis and optimization meaningful.

3.3. Jam and Reject Rates

Station jams were experienced during the data collection phase of the simulation

study. Jams occurred at both the build stations and the automatic stations. These jam

rates were not included in the simulation because they were found to be very low. Also,

since the system has actual people tending the machines, the jam time was short and

insignificant. If a jam occurs at a build station, the resident worker almost immediately

rectifies the problem. If a jam occurs at an automatic station, there is also a worker

assigned to take care of it Jams at automatic stations do not cause any significant

blocking or starving effects if they are corrected in a timely manner.

The reject rate of the vision system was observed during both the primary and the

validation data collection periods. After collection of some data and discussions with the

process engineers, the reject i;':":' was set at 1.5%. The reject rate is an important factor

to keep in mind due to the effect it can have on starvation; however, since the reject rate

was somewhat controllable, this factor was not used as a decision variable.

www.manaraa.com

36

3.4. Simulation Output

In order to measure the performance of different combinations of decision

variables, it is necessary to define the quantity to be obtained from the simulation model;

this quantity is the number of good evaporator cores assembled in a given shift. Along

with this value, it is also necessary to keep record of the associated combination of

decision variables. These decision variables include the station configuration and the

number of pallets. A single number between I and 63, inclusive, is used to represent the

station configuration. The set of build stations is viewed as a six element array, 0

meaning no worker is present and 1 meaning the station is occupied by a worker. The

single number representing the station configuration is simply the decimal equivalent of

the binary number created by the six element array. The simulation outputs the

following three pieces of information to a file: the quantity of good evaporator cores

produced, the station configuration, and the number of pallets.

Up to this point, the issue of performance measures has been avoided. This

research looks at two different measures for relative performance evaluation. Complete

discussions of these performance measures are given in Chapter 4.

www.manaraa.com

37

4. DESCRIPTION OF ALGORITHMS

This chapter contains descriptions of genetic algorithms and stochastic

quasigradient methods. General descriptions of both algorithms are given followed by

explanations of each of the modified versions tested in this research. Related issues

including performance measures and penalty function are also discussed.

4.1. The Genetic Algorithm

As mentioned previously, genetic algorithms are patterned after the process of

natural selection. Natural selection is a process that ocurrs in natural systems by which

the fittest individuals dominate in the mating pools. This tends to perpetuate

characteristics of the more fit individuals. This chapter descibes the basic operations that

make up genetic algorithms and how a simple genetic algorithm was used to optimize the

decision parameters of the simulated evaporator core build system in chapter 3. The

genetic algorithm described in this research is a modified version of that presented in

Goldberg's (1989) text.

4.1.1. A general description of gelletic algorithms

In order to describe how the genetic algorithm works, it is first necessary to

present the basic components. The genetic algorithm operates on a population. This

population is composed of a number of individuals. These individuals are simply bit

arrays or bit strings (arrays or strings of Os and Is). The decision variables of the system

or function being optimized are coded into these bit strings. Each bit string represents a

certain set of values for the decision variables. These sets of decision variables eac~ h,,";!

some associated performance measure. These performance measures are used to evaluate

the fitness of the associated bit string.

www.manaraa.com

38

The genetic algorithm described in this research uses three basic operators:

reproduction, crossover, ~d mutation. These operators process the population of

individuals from generation to generation. The reproduction operator creates a mating

pool of individuals by copying existing strings according their fitness value. Each string

has a fitness value and each generation has a total fitness or sumfitness value. The fitness

value of an individual string divided by the sumfitness gives the probability of that string

being part of the mating pool for the next generation (for maximization problems). A

similar procedure is used to calculate the probability of a string being part of the mating

pool for minimization problems. It is this weighting scheme that allows the more fit

individuals to be dominant contributors to the mating pool. Once the mating pool has

been created, the crossover operator is applied. There are two steps to the crossover

operation. First, random pairs of individuals in the mating pool are mated. This mating

involves the possibility of crossover andlor mutation. Crossover and mutation occur with

some specified probability. Second, if crossover is slated to occur, a crossover site is

randomly chosen. For example, suppose we have two strings being mated and crossover

is to occur between bits 4 and 5.

string 1: 01001101011 => 0100101100

Crossover

string 2: 0111110 11 00 => 011110 10 11

This clearly shows how the respective strings retain their original identity up to the point

of the crossover site and then they exchange the remaining portions of their strings with

each other. If crossover is not to occur, the parents are copied into the next generation.

The mutation operator is applied to each bit of each string. Mutation is simply the

toggling of a bit according to the mutation probability. Through these three operators,

generations of individuals are processed. This idea is summarized in Figure 4.1.

www.manaraa.com

39

Generation Reproduction
>

Generation
x x+l

Crossover
Population > Population

Mutation
Size n > Size n

Figure 4.1 The operation of the genetic algorithm (Goldberg 1989)

The fmal generation should contain more fit individuals on average than the initial

generation. The formal mathematical foundations for the genetic algorithm are presented

by Holland (1975). Goldberg (1989) also presents these foundations, but in a more

example oriented manner.

4.1.2. The genetic algorithm in this research

The genetic algorithm implemented for the optimization of the evaporator

assembly system uses the three basic operators discussed previously. The main

differences between the genetic algorithm used in this research and the simple genetic

algorithm presented by Goldberg (1989) is the handling of the individual structure and

the determination of the performance measure. The algorithms used in this research were

written in C language and Goldberg used PASCAL to implement his simple genetic

algorithm. This made it necessary to change the specific structuring of the code.

Through this restructuring, Goldberg's simple genetic algorithm was transformed to

specifically accommodate the system being studied in this research.

The decision variables used in this research encode into the genetic algorithm

very well. These decision variables are the number of workers and the number of pallets.

The number of workers must be identified by both qu~tity and distribution. Knowledge

of only the number of workers is insufficient; the placement of those workers is also

www.manaraa.com

40

important. Recall that the evaporator assembly system contains six build stations. Each

build station either contains zero or one worker. Describing the number of work~rs and

their respective placements naturally encodes into bit string form. The number of pallets

are also easily encoded into a bit string form. The decimal value of the number of pallets

is simply converted to its binary equivalent. The maximum number of pallets in the

system varies according to the placement and number of workers. The overall maximum

value is 31 pallets; this can be encoded by a bit string of of size 5. Throughout this

research, the number and placement of workers will be referred to as the station

configuration. An individual in this research is defined by a specific station

configuration number and a specific number of pallets. Since the individuals must be in

the form of a bit string, the separate bit strings formed from the encoded decision

variables are concatenated. For example, suppose there are four workers assembling

evaporators: one at station 6, one at station 5, .one at station 3, and one at station 1. Also

suppose there are 17 pallets. The individual would appear as follows:

Encoded Station Configuration: 110101

Encoded Number of Pallets: 10001

Associated Individual: 110 1 0 11000 1

The algorithm also keeps track of the performance measure for each individual.

Discussion of the performance measures used to evaluate individuals is presented in a

later section.

In order to apply the genetic algorithm, some initial population of individuals is

required. There are different ways of obtaining this group, some authors suggest

l.u.':"mly creating the initial generation, while others recommend that some insight be

used. The choice of this research is to select an initial population (generation 0)

randomly, to purposely deny any special advantage to the genetic algorithm.

www.manaraa.com

41

From the description in chapter 3, it can be observed that this assembly system

has a finite set of decision variables. The nature of the decision variable encoding

process can cause problems in terms of remaining inside of the feasible region. As the

genetic algorithm operates it is probable that some individual will be introduced into the

population that is not in the feasible decision variable space. This problem is alleviated

by using a penalty function. A later section in this chapter is dedicated specifically to the

discussion of the penalty functions used.

4.2. Stochastic Quasigradient Methods (SQG)

SQG methods use statistical estimates of the gradient of a function to determine

which direction to step in the solution space. Using an SQG method involves objective

function formulation, choice of step direction, choice of step size, a projection operation,

and some stopping criteria.

4.2.1. Objective function formulation

The objective function should accurately reflect the performance of the system

being studied. Since performance measures are discussed in a later section, we will

simply refer to this quantity as PM for purposes of this description. The objective

function for the optimization of the evaporator assembly decision variables can be shown

as follows:

min: PM = F(x) ; x in X

F(x) = Erof(x, 00)

The variable x above represents a vector of decision variables constrained within set x.
The 0) denotes a random variable belonging to some space. This randomness can enter

the problem through blocking effects, starving effects, evaporator build times, and vision

www.manaraa.com

42

inspection times. For a given set of decision variables, simulation can provide the

expected value of F(x}. Based on this expected value and a step direction, the value of x

can be forced towards an optimal solution.

4.2.2. The operatioll of SQG

The stochastic quasigradient algorithm progresses from one feasible point to

another using the following algorithm:

xs+ I = 7rs (xs - Ps us)

where Xs is the current approximation to the optimal solution, Ps is a step size, and Us is

the current step direction. The 1ts symbol simply represents a projection operator. This

insures when the algorithm steps, it does not step out of bounds; it keeps the solution in

the feasible region. The general procedure for applying this projection operation is to

project the solution back into the feasible region when an out of bounds condition is

encountered. The closest feasible solution is usually chosen. The final variable in the

sQa algorithm equation, xs+l, is the next approximation of the optimal solution. To

apply this.algorithm we need to choose a step size, a step direction, and a stopping

criteria.

There are three approaches in the choice of step size: flXed, variable, and

modified. The flXed step size method should be applied with caution. If the initial

solution is not very close to the optimal solution, a flXed step size can restrict the sQa

algorithm from finding the global optimal. In many cases a sub-optimal or local minima

will be chosen instead.

The variable step size method adjusts the step size according to changes in

solution estimates over some period of time. The dynamic behavior of this method tends

www.manaraa.com

43

to make step sizes large when the current solution is expected to be distant from the

optimal solution. and small when the optimal solution is expected to be near.

In the modified step size method. the size of the step mayor may not change

during a given iteration. The decision to modify the step size is made according to some

criteria. such as the moving average of the estimated function value (Liu 1987). If the

step size is to be modified. it is usually decreased by some fixed percentage.

We can use a statistical estimate of the gradient function F(x) as the step

direction. This makes 'Us equivalent to Ss such that

E(;slxl. X2.···. Xs) = Fx(xs) + as = vs·

In this equation. Ss is a statistical estimate of 'Us and (xs decreases as the number of

iterations increases. In this equation. 'Us is the stochastic quasigradient of function F(x).

There are several methods available to estimate the gradient direction. Some of the more

common methods include finite difference approximations. These approximations come

in two varieties: forward fmite difference(FFD) and central finite difference(CFD). The

FFD can be expressed in the following form:

where s is the iteration number. ()s is the step. COs.i.t and COs.i.2 are stochastic random

values generated in iteration s. and ei represents unit basis vectors from Rn. The CFD

can be expressed in the following form:

By comparing the two finite difference equations. it is observed that the CFD method

requires twice as many function evaluations as does the FFD method. Depending on how

www.manaraa.com

44

the function evaluations are performed, the extra calculations required for the CPO

method can significantly increase the computer run time required.

The final issue involving the application of an SQO algorithm is the stopping

criteria. Several different schemes for determining the iteration in which to stop the

algorithm have been proposed. Methods include stopping when the function value

reaches some prescribed goal, stopping the algorithm when the step size has been

reduced to a certain value, stopping after a certain number of iterations have occurred, or

stopping after a certain period of time.

4.2.3. SQG algorithms used in this research

This research uses four different versions of the SQO algorithm to optimize the

simulated evaporator assembly system. The binary nature of the station configuration

decision variable made encoding difficult. This required the experimentation of several

different encoding schemes. The forward finite difference (FFD) method is used in each

of the SQO implementations to determine the gradient direction. A variable step size is

used for the "number of pallets" decision variable in each heuristic. In these cases, a

constant reduction multiplier is applied. The step size for other decision variables is

specific to the particular implementation. All the systems implementing a heuristic form

of the SQO method are initialized with a randomly chosen set of decision variables. The

determination of appropriate step sizes, reduction multiplier percentages, and stopping

criteria for each algorithm are presented in Chapter 5.

4.2.3.1. SQG 1 SQO 1 is the first version of the stochastic quasi gradient

method. In this heuristic, there are two decision variables: a station configuration and the

number of pallets. In each iteration, the decision variables are changed according to the

www.manaraa.com

45

SQG method. The step in the station configuration context is defined as the toggling of a

randomly chosen station bit; if the gradient determined that toggling the chosen bit is

beneficial, then it is toggled, otherwise the bit remains the same. The number of pallets

is an integer between 1 and max_pallets, inclusive. Max_pallets is the maximum number

of pallets allowed by the given station configuration. The step size for the station

configuration is constant a one. The step size for the number of pallets is varied

according to the modified method.

4.2.3.2. SQG2 SQG2 is the second heuristic implementing the stochastic

quasigradient method. SQG2 has two decision variables: number of workers and number

of pallets. The number of workers variable has a fixed step size of one. SQG2 looks at

adding a worker to the current configuration using FFD. A vacant station from the

current configuration is randomly chosen. If the gradient indicates that we must step

forward, that bit is added to the station configuration. If the gradient says we must step

the opposite direction, a randomly chosen occupied build station is vacated (changed

from 1 to 0). The number of pallets variable is handled in the usual manner.

4.2.3.3. SQG3 SQG3 is the third implementation of the stochastic

quasigradient method. This version also has two decision variables: station configuration

and number of pallets. In this particular variant the station configuration is converted

from a 6 digit binary number to the equivalent decimal value. This decimal number is

then used as a decision variable. In SQG3, both the decimal equivalent of the station

configuration and the number of pallets have modified step sizes. The 1)ti1I i.1Dg step sizes

for the decision variables do not have to be the same; however, the reduction multiplier

www.manaraa.com

46

percentages are the same. Both variables are handled in the usual manner by the SQG

method.

4.2.3.4. SQG4 This version of the SQG method is used as part of the

tandem algorithm. This variation uses the SQG method to only determine the number of

pallets. SQG4 takes sets of decision variables already determined to be good by a

genetic algorithm (GAl) and specifically looks for solution sets with the same station

configurations but a different number of pallets. SQG4 is intended to do the fine tuning

work for the tandem algorithm. SQG4 also uses a modified step size method for the

number of pallets.

4.3. The Tandem Algorithm

The tandem algorithm is a hybrid heuristic employing versions of both the genetic

algorithm and the SQG method. The tandem algorithm optimizes a set of decision

variables by first applying the genetic algorithm (GAl) for a specified num.ber of

generations. Each of the ~ndividuals in the last generation are then used as starting

configurations for a version of the SQG method (SQG4). SQG4 does not change any of

the station configurations found by GAl, but searches for more desirable performance

measure values by optimizing the number of pallets decision variable. Since the problem

formulation in this research calls for minimization, the idea behind the tandem heuristic

is to let the genetic algorithm locate the big valleys in the response surface and then

allow the SQG method to find the bottoms of these Valleys. In this research, the genetic

algortihm component (GAl) outputs its results into a file where the SQG mtil.ul1U portion

accesses the data.

www.manaraa.com

47

4.4. Production Data from Simulation

A simulation of the evaporator assembly system was used to obtain the

production data needed for the optimization algorithms. The simulation outputs the

number of accepted evaporator cores produced in a given shift. As mentioned in chapter

3, the simulation of this assembly system takes quite a while to run due to the size of the

model and the number of Scan statements used. The initial intention in this research was

to tie all the optimization programs directly to the simulation model to obtain the

production information needed to calculate the performance measure. Given all the

different algorithms and replications tested in this research, it would have have taken

months of computer time to obtain the results. To overcome this problem, the simulation

program was run for 5 replications of every possible combination of station

configurations and number of pallets. There are 1551 different combinations. This task

took about 180 hours of 486DX33 computer run time. The results from all these

combinations were placed into a single data me. This data me contains 1551 lines, one

for each possible combination. Each line contains five "good cores produced" values, a

station configuration number, and the number of pallets. This complete set of data was

collapsed into two different meso SIMA VG.DAT contains 1551 lines of information, but

only 3 values per line: the average of the 5 replicates, the station configuration number,

and the number of pallets. The other collapsed data me, SIMNORM.DAT, contains

1551 lines with 4 pieces of information on each line: the average value of the 5

replicates, the standard deviation of the 5 replicates, the station configuration, and the

number of pallets. The me SIMNORM.DAT is used in place of actually linking the

simulation program with the OpUlUl.t.ation programs. When an optimization algorithm

needs a production value for a specific station configuration, it simply accesses

SIMNORM.DAT and obtains the associated average production value and the standard

www.manaraa.com

48

deviation. The optimization program then generates a normal random variate using this

mean and standard deviation.

This method of using data from a file as opposed to running the simulation model

each time production data is needed, allowed for expedient testing of numerous

algorithms and multiple replications. The standard deviations for the production value,

within a given station configuration and a given number of pallets, were relatively small.

Only 5 replications of production values were collected for each configuration; however,

they tended to be consistent

4.5. Performance Measures

This research compares several different heuristics intended to optimize the

decision variables of the evaporator assembly system. To make these comparisons,

measures of performance were defined. Two different measures of performance were

investigated for possible comparison use. These two measures will be referred to as

performance measure 1 (pml) and performance measure 2 (pm2). Pml is defined by the

following:

1
(op_rate)(hrsl shift) (number of builders)

pm =
production value

where op_rate is the average hourly wage of the operator, hrs/shijt is fixed at 8, the

number of builders is as described, and the production value is the number of good cores

produced in the shift Pml values were viewed for the 1551 line data set The response

surface produced was rather flat and uninteresting. To make the response surface more

interesting, pm2 was created. To determine pm2, we must first define some other

quantities. Pm2 is based on a required production rate, referred to as req. This was set at

1368 evaporator cores. This is about four times the standard for one builder. This

www.manaraa.com

49

required value can be easily adjusted according to production needs. We use req to

define the requirement ratio rr as follows:

production value
rr= .

req

We must also define a penalty cost to production values above and below req.

Underproduction and overproduction are penalized at different rates. The penalty is

defined as follows:

. {if rr S I penalty = (upc1(req- prod) I prod
penalty =

else penalty = (upc2(prod-req»I prod

where upc1 is the unit penalty cost for underproduction and upc2 is the unit cost for

overproduction. Given these quantities, pm2 is defined as the following:

pm2 = pml + penalty.

The two parameters, upcl and upc2, can be adjusted to scale the terrain of the

response surface. Penalizing for underproduction and overproduction makes sense from

a manufacturing standpoint. Underproduction can impede the assembly of automobiles

while overproduction must occupy valuable floor space. Since overproduction must be

stored as work-in-process, it runs the chance of being damaged during the extra handling

involved.

As mentioned before, the response surface created by using pm I is basically flat.

There are too many vastly different solutions that have similar performance measures.

This would make it very difficult to judge the performance of the optimzation heuristics;

therefore, only pm2 was used for comparison purposes.

www.manaraa.com

50

4.6. Penalty Functions

In the discussion of genetic algorithms and SQG methods, the notion of some

solution sets being out of bounds was mentioned. This condition can occur when there

are zero workers or too many pallets. These conditions are very undesirable. To insure

that these infeasible solutions do not remain in the solution set, their respective

performance measures are purposely inflated. The penalty function causes the

performance measure value of the infeasible solution to be 100 to 1000 times larger than

average feasible pm values. This drives these infeasible solutions out of the solution set.

www.manaraa.com

51

5. RESULTS FROM ALGORITHM COMPARISONS

This chapter presents the results from the comparison of the five heuristics

described in Chapter 4. Before comparing, it was necessary to choose proper operating

parameter settings for each of the algorithms. The determination of the best parameter

settings was accomplished using design of experiments techniques. The concept of

replication arises throughout the this section; five replications simply means that the

algorithm was run five times with a different random number seed for each run.

5.1. Setting Algorithm Parameters

Each of the algorithms have a specific set of operating parameters that need to be

determined prior to algorithm comparisons. The parameters are set using factorial and

single factor designed experiments. Throughout all the experiments, an alpha (ex) level

of .05 is used. The SIMA VO.DAT was the data me used to set all the operating

parameters. The reason behind this is that the response surface for this data me is more

stable than that of SIMNORM.DAT; however, the general shape of the two response

surfaces should be the same. The performance measure pm2 is used for setting all

operating parameters. The underproduction and overproduction unit costs were 1.0 and

0.25, respectively.

Each of the SQG based heuristics require several operating parameters. One of

those parameters is the stopping criteria In this research, the stopping criteria will be

some fIXed number of iterations. Therefore, every SQO based algorithm will need to

have a designated stopping iteration.

www.manaraa.com

52

5.1.1. DetermiIJiIJg the GA's operatilJg parameters

To run the genetic algorithm we must determine four different operating

parameters: crossover probability, mutation probability, population size, and run length.

Some previous research indicated values for the first three of these parameters. Goldberg

(1989) provided results from a function optimization problem which suggested that the

crossover probability be set relatively high, the mutation probability be set low (inversely

proportional to the population size), and use a moderate population size. The actual

settings proposed by Goldberg were as follows:

crossover probability: 0.6

mutation probability : 0.02
population size : 30

Wellman (1991) tested several different combinations of these three parameters. Recall

that Wellman used a genetic algorithm to optimize the decision variables of an

asynchronous automatic assembly system. Wellman recommended the following set of

operating parameters:

crossover probability: 0.6 or 0.8

mutation probability: 0.001 or 0.005

popUlation size : 30

Since both authors mentioned had different systems they were optimizing, it was

necessary to test different GA parameters for use with the simulated evaporator assembly

system. Two separate experiments were performed. The first experiment was a 33

factorial experiment and was used to test the crossover probability, the mutation

probability, and the population size. This first test implemented a run length of 10

generations. The results are given in Table 5.1. Table 5.1 shows that there is' only one

significant factor, and that is the population size. With this result, a single factor

www.manaraa.com

53

Table 5.1 GA parameter factorial experiment results

Parameter Levels Tested Fo F . (a =.05) ent

(A) Crossover Prob. 0.4, 0.6, 0.8 0.23 3.35

(B) Mutation Prob. 0.01,0.02,0.03 1.38 3.35

(C) Population Size 30,50,70 40.76 3.35

AxB interaction 0.78 2.73

AxC interaction 0.14 2.73

BxC interaction 1.38 2.73

ABC interaction 0.73 2.31

Experimental Conditions:

1. Two replicates for each combination.
2. Response = sum of top 20 pm2's in generation 10.

experiment was perfonned to explicitly test different population sizes. The crossover

probability and the mutation probability were set at 0.6 and 0.02, respectively. Table 5.2

provides the ANDV A results for the population size experiment.

The results in Table 5.2 show that the population size has a significant effect on

the response in the experiment. To select a specific population size, we must first

compare several different sizes. Figure 5.1 provides the population size averages for

different levels. From this figure it can be seen that the average response ranges from

about 7.41 to 6.96. There appears to be an approximate inverse relationship between the

population size and the response value. Also, the chart shows a defmite drop in average

response up to a population size of 50, and then it tends to level off. The appropriate

method of choosing a population size is to compare treatment levels using a test such as a

Scheffe' test, a Least Significant Difference (LSD) test, or a Bonferroni test. The LSD

method is too risky because of the possibility of making a Type I error. There are

www.manaraa.com

54

Table 5.2 ANDV A summary from population size experiment

Source of Variation Levels Tested

Population size 30, 40, 50, 60, 70, 80, 90, 100

Experimental Conditions:

1. Five replicates for each combination.
2. Response = sum of top 20 pm2's in generation 10.

7.5

R 7.4
e
s 7.3

p 7.2
o
n 7.1
s
e 7

30 40

Population Size vs. Average Response

50 60 70 80

Population Size

Fo
7.27

90

Figure 5.1 Population size vs. average response

F . (a =.05)
enl

2.31

100

k(k-l) 12 different pair-wise comparisons, where k is the number of treatments. Figure

5.1 contains 8 different treatments which translates to 28 existing comparisons. If an (X

level of .05 is used for each of the 28 comparisons, it is almost guaranteed that a Type I

error will occur. Both the Scheffe' and Bonferroni tests are designed to overcome this

problem. We will use the Bonferroni test whenever treatment levels are being compared.

The Bonferroni test is essentially an LSD test with an (X level adjusted for the number of

comparisons.

www.manaraa.com

55

Using a Bonferroni test, the 8 different population sizes were compared. Figure

5.2 presents the significance groupings for these population sizes. The reader is

reminded that the objective of this research is to minimize the performance measure.

Figure 5.2 clearly illustrates that population sizes of 30 are significantly different than

sizes of 50, 60, 70, 80, 90, and 100. A population of 40 is not significantly different than

any of the other sizes. With the given objective function being a minimization problem,

population sizes of 50, 60, 70, 80, 90, and 100 provide the best performance of those

tested.

30 50,60,70,80,90,100

40

Decreasing PM Valne

Figure 5.2 Significance groupings for population sizes

The final operating parameter for the genetic algorithm is the number of

generations. This parameter was determined by using a single factor experiment testing

the following levels: 5, 10, 15, 20, and 25 generations. The results from ANDY A are

provided in Table 5.3.

Table 5.3 shows that the levels of the number of generations tested were not

significantly different To get a better picture of how the number of generations run

using the genetic algorithm affects the average v~ue of the 20 best performance

measures, a plot was created. Figure 5.3 is a plot of the average performance measure

versus the number of generations run. From this figure, we see that average response is

rather high for the first three generations, but levels off after that. This graph shows why

www.manaraa.com

56

Table 5.3 ANOV A summary from run length experiment

Source of Variation Levels Tested Fo
Number of generations 5, 10, 15, 20, 25 0.93

Experimental Conditions:
1. Five replicates for each combination.
2. Response = average of top 20 pm2's.

Number of Generations vs. Average of top 20 PM2's

0.467
R
e 0.447

s 0.427
P
o 0.407
n
s 0.387

e 0.367

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

Number of Generations

Figure 5.3 Number of generations vs. average response

F . (a =.05)
enl

2.87

the ANOV A results in Table 5.3 indicated that the number of generations did not have a

significant effect on the response. Since the number of generations of 10 is well into the

level response area, but not so large that it takes an unreasonable amount of time to run

in our experiments, it was chosen as the parameter setting.

5.1.2. Determinillg SQGl's operatillg parameters

There are three different operating parameters that need to be set to run SQG 1:

reduction multiplier percentage, initial pallet step size, and stopping iteration. There

www.manaraa.com

57

were not any clear recommendations from previous work to assist in choosing these

parameters. To check different levels of the operating parameters a 33 factorial

experiment was used. The results from this experiment are given in Table 5.4.

This experiment indicated that the stopping iteration is the only significant factor. To

Table 5.4 SQG 1 operating parameter experiment results

Parameter Levels Tested Fo F . (a=.05) em

(A) Reduction % 75%, 85%, 95% 2.79 3.35

(B) !nit Pallet Step Size 1, 8, 15 2.20 3.35

(C) Stopping Iteration 10,20,30 22.73 3.35

AxB interaction 1.01 2.73

AxC interaction 1.57 2.73

BxC interaction 0.90 2.73

ABC interaction 0.59 2.31

Experimental Conditions:

1. Two replicates for each combination.
2. Response = optimal value in the last iteration.

determine which stopping iteration size to use, we must perform an additional

experiment focusing only on this parameter. To test various levels of the stopping

iteration parameter, it is necessary to fix the reduction multiplier percentage and the

initial pallet step size. The reduction multiplier percentage and the initial pallet step size

were set at 95% and 8, respectively. Both of these levels were chosen because they had

the lowest totals for their rr.s':lprtive variables. The results from this single factor

experiment are displayed in Table 5.5. The results prove that the stopping iteration has a

significant effect on the response. The next step was to see which levels of the stopping

www.manaraa.com

58

iteration provide the most desirable effect. This can be accomplished by using a

Bonferroni test. The results of the Bonferroni test performed on the stopping iteration

variable are pictured in Figure 5.4. Figure 5.4 indicates that the there are two significant

groups of stopping iterations: 5 and the others. This figure shows that choosing a

stopping iteration of 10, 15, 20, 25, or 30 is better than choosing 5.

Table 5.5 ANOV A summary for stopping iteration experiment

Source of Variation Levels Tested Fo F . (a =.05)
enl

Stopping iteration 5,10,15,20,25,30 5.89 2.62

Experimental Conditions:

1. Five replicates for each combination.
2. Response = optimal value in the last iteration.

5 10,15,20,25,30

Decreasing PM Value

Figure 5.4 Significance groupings for stopping iterations

5.1.3. Determillillg SQG2's operatillg parameters

As in the case of SQG 1, there are also three operating parameters that need to be

set before SQG2 can be applied to the optimization of the simulated evaporator assembly

system. These factors are reduction multiplier percentage, initial pallet step size, and

number of iterations. As before, a 33 factorial experiment was used to determine how to

set these three operating parameters. The results of this experiment are provided in Table

5.6. The outcome of this experiment shows that given the levels of the factors tested,

www.manaraa.com

59

none of the main effects or any interactions have a significant effect on the response.

Since no factors were found to be significant, the levels of the factors were set by

choosing the ones which supplied the minimum totals in the ANOV A. These settings

were 75% for the reduction multiplier percentage, 8 for the initial pallet step size, and 20

for the number of iterations.

Table 5.6 SQG2 operating parameter experiment results

Parameter Levels Tested Fo F . (a =.05)
enl

(A) Reduction % 75%, 85%, 95% 1.59 3.35

(B) Init. Pallet Step Size 1, 8, 15 1.15 3.35

(C) Stopping Iteration 10,20,30 2.75 3.35

AxB interaction 2.36 2.73

AxC interaction 0.64 2.73

BxC interaction 0.62 2.73

ABC interaction 0.97 2.31

Experimental Conditions:

1. Two replicates for each combination.
2. Response = optimal value in the last iteration.

5.1.4. Determining SQG3's operating parameters

The operation of SQG3 differs slightly from the two previous versions discussed.

SQG3 has four different operating parameters that need to be set prior to its application

to the optimization problem in this research: reduction multiplier percentage, initial pallet

step size, initial station configuration step size, and the stopping iteration. To set alllOlif

of these operating parameters, a 33 factorial experiment was implemented followed by a

www.manaraa.com

60

single factor experiment. This allowed for the statistical testing of all four parameters.

The results from the 3 factor factorial experiment are given in Table 5.7. This table

plainly shows that none of the parameters, at the levels tested, had a significant effect on

the response. Since no significant effects were detected, these three parameters were set

Table 5.7 SQG3 operating parameter experiment results

Parameter Levels Tested Fo F ,(a=.05)
ent

(A) Reduction % 75%, 85%, 95% 0.07 3.35

(B) Init. Pallet Step Size 1,8, 15 0.10 3.35

(C) Init. SC Step Size 1, 8, 15 0.38 3.35

AxB interaction 1.16 2.73

AxC interaction 1.56 2.73

BxC interaction 0.77 2.73

ABC interaction 0.66 2.31

Experimental Conditions:

1. Two replicates for each combination.
2. Response = optimal value in the last iteration.

according to minimum total values from the ANDV A output. The reduction multiplier

percentage was set at 95%, the initial pallet step size was set at 8, and the initial station

configuration step size was set at 15. The other required operating parameter is the

stopping iteration.

As mentioned before, a single factor experiment was used to analyze different

levels of the stopping iteration parameter. T'-", findings from this experiment are shown

in Table 5.8. This experiment shows that none of the various levels of the stopping

www.manaraa.com

61

Table S.S ANOV A summary for stopping iteration of SQG3 experiment

Source of Variation Levels Tested Fo F . (a=.05)
enl

Stopping iteration 5, 10, 15, 20, 25, 30 1.25 2.62

Experimental Conditions:
1. Five replicates for each combination.
2. Response = optimal value in the last iteration.

iteration had a significant effect on the response, so the level of the parameter was set

using the minimum total. A stopping iteration of 25 was chosen.

5.1.5. Determil,ing SQG4's operatillg parameters

As mentioned before, SQG4 is the second half of the tandem algorithm. This

heuristic has three operating parameters: the reduction multiplier percentage, the initial

pallet step size, and the stopping iteration. To set these parameters a 33 factorial

experiment was utilized. The results from this experiment are presented in Table 5.9.

The response for the experiment in Table 5.9 is the sum of the best 20

performance measures. The reader is reminded that SQG4 uses a data set found by GAL

This data set contains the configurations of the 20 best individuals in the final generation

of a genetic algorithm. SQG4 uses each one of these configurations as a starting point

and attempts to optimize the number of pallets. This is the reason the performance

measure for this experiment is a sum of the best 20 values. Table 5.9 shows that none of

the factors tested provided a significant effect on the response. As in several previous

cases, the factor level settings were chosen according the minimum total values found in

Ute ANOV A. The reduction multiplier percentage, the initial pallet step size, and the

stopping iteration were established at 85%,8, and 15, respectively.

www.manaraa.com

62

Table 5.9 SQG4 operating parameter experiment results

Parameter Levels Tested Fo F . (a=.05) ent

(A) Reduction % 75%, 85%, 95% 2.24 3.35

(B) Init. Pallet Step Size 1,8, 15 2.64 3.35

(C) Stopping Iteration 10, 15,20 0.96 3.35

AxB interaction 2.04 2.73

Axe interaction 0.60 2.73

BxC interaction 0.98 2.73

ABC interaction 1.11 2.31

Experimental Conditions:
1. Two replicates for each combination.
2. Response = Sum of the pm2's of top 20 individuals.

5.1.6. A summary of chosen operating parameters

The operating parameters for each algorithm tested in this research were

established using design of experiments techniques. In some cases 3 factor factorial

designs were utilized, and in other situations single factor experiments were employed.

Tables 5.10 and 5.11 present summaries of the settings of all the various operating

parameters determined in this chapter. The parameters are listed by their associated

optimization heuristic.

Table 5.10 A summary of operating parameter settings for GA based algorithms

Algorithm Crossover Mutation Population Stopping

Probability Probability Size Generation

GA 0.60 0.02 60 10

Tandem (GAl) 0.60 0.02 60 10

www.manaraa.com

63

Table 5.11 A summary of operating parameter settings for SQG based algorithms

Algorithm Reduction Initial Pallet Stat Config. Stopping

Multiplier % Step Size Step Size Iteration

SQG1 95% 8 15

SQG2 75% 8 20

SQG3 95% 8 15 25

Tandem (SQG4) 85% 8 15

5.2. Comparing the Optimization Algorithms

To compare the five optimization heuristics given in this research, we must first

define the entire set of experimental conditions. The operating parameters in Tables 5.10

and 5.11 along with the following define the exact experimental conditions:

1. SIMNORM.DAT was used as the data file.
2. An a. level of .05 was used for all testing, except Bonferroni.

3. The performance measure defmition pm2 was used;

4. Penalty costs: upel = 2.00, upe2 = 0.40.

5. Required production was set at 1368 (req).

As listed, SIMNORM.DAT was used as the input data file. Recall that this file contains

a mean value for "good cores produced" in a shift, the standard deviation for the number

of "good cores produced" in a shift, the station configuration number, and the number of

pallets. There is a set containing these four pieces of information for every possible

combination of station configuration and number of pallets. Each optimization program

produces a normal random variate using the mean and standard deviation when a value

for "good evaporators produced" is needed.

www.manaraa.com

64

The optimization heuristics were compared using three different approaches. The

ftrst comparison involved a single factor experiment with each of the five algorithms

being a treatment level. The response for this experiment was the best performance

measure. The second comparison category is the optimal system conftgurations found by

each of the algorithms. The third comparison classilles the efftciencies of the algorithms

by their respective computer run times.

5.2.1. Algorithm comparisoll by the best per/ormallce measure

To compare the ftve algorithms, a logical response had to be selected. Remember

that the genetic algorithm based heuristics produce several different sets of station

conftgurations and associated number of pallets, whereas the SQG based heuristics

produce a single system conftguration. So that comparisons would make sense, a

response of the best performance measure was chosen. The ANDV A results from this

experiment are displayed in Table 5.12.

This table tells us that the different optimization algorithms provide signillcantly

different effects on the performance measure. The mean values of the best performance

measures over ten replications for each optimization algorithm are given in Table 5.13.

To determine which optimization algorithms provide more desirable response values, a

Bonferroni test was applied to each of the treatment means. The value of the Bonferroni

test statistic was 0.1936. This implies that any difference in the mean responses between

heuristics of greater than 0.1936 is signillcant Table 5.13 clearly shows that the mean

values of the best performance measures for 10 replications are very close, except in the

case of SQ?~ Since a data me containing the production information was used, it was

possible to load this data into a spreadsheet and scan for minimum and maximum values.

Having this data set in a spreadsheet, it was simple to calculate the performance measure.

www.manaraa.com

65

Table 5.12 ANOV A summary for the comparison of the 5 optimization heuristics

Source of Variation

Optimization heuristic

Experimental Conditions:

Algorithms Tested

GA, SQG 1, SQG2,

SQG3, Tandem

1. Ten replicates for each combination.

Fo
5.67

2. Response = performance measure of optimal solution.

F . (a =.05)
ent

2.58

Table 5.13 Mean values of the best performance measures for 10 replications

Algorithm Mean Value <l~)
I-

GA 0.351126

SQGl 0.351522

SQG2 0.351639

SQG3 0.582505

Tandem 0.350993

~ ___ SQG __ 3 __ ~1 1~ _______ S_QG __ 2._S_QG __ l._G_A_.T_~_d_em ____________ ~
>

Decreasing PM Value

Figure 5.5 Significance groupings of algorithm performance according to the best
performance measure

www.manaraa.com

66

Pm2 values were calculated using average production per shift value. The global

minimum for pm2 using the average production per shift value was 0.348123. Four of

the five heuristics provided optimal solutions reasonably close to this value. As

mentioned before, the Bonferroni test was then applied. The groupings from this test are

illustrated in Figure 5.5. These groupings in Figure 5.5 indicate that SQG2, SQGl, GA,

and Tandem provide significantly better (lower) performance measure values than

SQG3.

5.2.2. Algorithm comparisoIJ by configuration of optimal solution

Another important way of comparing the performance of the five heuristics

proposed in this research, is to look at the station configuration and the number of pallets

in the optimal solution. Table 5.14 presents the statistics concerning the station

configuration and the number of pallets in the optimal solution. These results reveal

some interesting facts about the optimal solutions picked by different heuristics. All the

algorithms, except SQG3, provided optimal solutions consisting of four workers. Even

SQG3 found four workers to be the optimal in 7 out of the 10 replications. This means

that with the chosen required production level set at 1368, the unit cost of

underproduction set at 2.0, and the unit cost of overproduction set at 0.4, four workers is

the best choice. This outcome was expected when the value of 1368 was chosen for req.

There are 15 different combinations of four workers possible in this system (6 choose 4).

Most of these 15 station configurations were chosen by at least one of the algorithms at

one time or another; however, none of the algorithms honed in on any particular station

configuration.

www.manaraa.com

67

Table 5.14 System configuration information from optimal solutions

Algorithm ~ GA SQGl SQG2 SQG3 Tandem

Replication ..1. (sc, np) (sc, np) (sc, np) (sc, np) (sc, np)

1 011011 • 16 100111 • 19 111100. 17 011101 • 13 001111 • 14

2 010111 • 16 110011 ,21 101101 ,23 110101 .24 110110. 16

3 101101.15 111001 ,23 101110,22 110011 ,21 110110, 15

4 100111 , 19 001111 ,20 010111 , 15 001011 ,20 110011 , 15

5 110110,16 001111 , 14 101101 , 17 000111 , 13 101110, 15

6 101101 , 16 010111 , 15 101101 , 15 110011 , 15 110011 , 15

7 001111 , 19 010111 , 15 001111 , 17 010111 , 13 101110, 15

8 111100, 17 111010, 16 111001 , 17 010111 , 18 011101 , 15

9 110011 , 15 011101 , 16 111010, 18 110110,25 101011 , 15

10 111100,16 011101 , 15 110101 ,20 100011 , 10 100111 , 15
of workers 4,4,4 4,4,4

(min,max,avg)
4,4,4 3,4,3.7 4,4,4

of Pallets 15, 19, 16.5 14,20, 17.4 15,23, 18.1 10,25,17.2 14, 16, 15
(min,max,avg)

Note: sc denotes station configuration and np denotes number of pallets

Another interesting aspect of the data in Table 5.14 is the number of pallets given

as optimal solutions. As previously mentioned, the Tandem algorithm was designed to

first find optimal station configurations and then the optimal number of pallets for each

of those configurations. The optimal solution for the Tandem algorithm contained 15

pallets in 8 of the replications and 14 and 16 in the other two. GA and Tandem tended to

have more consistent values for the optimal number of pallets than SQG 1, SQG2, or

SQG3.

5.2.3. Algorithm comf~-:'!:"'" by computer rull time

Comparing the five different algorithms using computer run time as a point of

interest can be broken down into two categories: run time using SIMAN to directly

www.manaraa.com

68

obtain the production values and using a data file such as SIMNORM.DAT. As

mentioned before, the direct link to SIMAN takes significantly more computer run time

than using a data file like SIMNORM.DAT. Each of the heuristic programs have a

certain amount of overhead, but a majority of the run time is due to the retrieval of

production data. Table 5.15 lists the number of simulation runs or data file look ups

required and the approximate average time to obtain one replication. The time

measurements were made on a 486DX33 class microcomputer. Table 5.15 points out the

tremendous time saved by using the data me SIMNORM.DAT to generate production

data rather than directly using SIMAN. This table also shows that the heuristics

implementing a genetic algorithm (GA and Tandem) require significantly more

production information, and thus more computer run time. In terms of computer run

time requirements, SQG 1 and SQG2 are much more efficient than either GAl or

Tandem.

Table 5.15 Comparison of algorithms according to computer run time
Number of Approx. hours 7 repJ. Approx. hours 7 repJ.

Algorithm configs. checked using SIMNORM.DAT using SIMAN directly

GA

SQG1

SQG2

SQG3

Tandem

660

48

84

104

1300

0.0480

0.0042

0.0069

0.0078

0.2000

15.2

1.1

1.9

2.4

29.9

www.manaraa.com

69

5.3. General Observations Concerning the Optimization Algorithms

The comparisons provided in this chapter have demonstrated that four of the five

proposed heuristics arrive at good solutions for the optimization of the system

configuration of the simulated evaporator assembly system. The four best heuristics

were GA, SQGl, SQG2, and Tandem. There are some other general considerations

when comparing these four acceptable heuristics.

SQG 1 exhibited very good perfonnance in the categories of perfonnance measure

optimization and computer run time; however, this algorithm has a potentially dangerous

flaw. When the initial number of workers is far from the optimal value, SQGl can get

hung up on some distant local minima The required production was set at 1368 in the

definition of perfonnance measure 2 (pm2). This value was set anticipating that one or

more cases with four workers would be optimal. If the required production had been set

at some value where the optimal number of workers would be for example one or six,

there is a much greater chance that SQG 1 would have problems.

The genetic based algorithms (GA and Tandem) both provided very good results

but took inordinate amounts of time to run relative to the SQG based algorithms. One

must not overlook the flexibility of the genetic algorithms. The genetic based algorithms

supply multiple solutions. Approximately 25 to 35% of the solutions contained in the

final generation are not significantly different than the declared optima. This adds a

degree of flexibility to the optimization of the system. Imagine a situation where a

specific build station or some combination of build stations cannot be used for one reason

or another, with a genetic based algorithm there are several acceptable alternative

solutions available.

Chapter 6 will summarize the findings of this research and offer some topics for

future work.

www.manaraa.com

70

6. CONCLUSION

The work presented in this research can be divided into two distinct categories:

development of the simulation model and the application of optimization algorithms. A

simulation model was developed to represent an existing evaporator assembly system.

This assembly system has six parallel manual evaporator build stations and several

automatic stations. The system can be officially classified as a palletized semi-automatic

asynchronous build line. The evaporator assembly system is subject to effects from

several stochastic variables. These stochastic elements make deterministic analysis of the

system nearly impossible; therefore, techniques involving stochastic optimization were

implemented. Five different optimization heuristics were applied to the simulated

assembly system. These heuristics were based on genetic algorithms, stochastic

quasigradient methods (SQG), or both. The decision variables used in this optimization

problem were station configuration and number of pallets. The measure of performance

utilized was essentially a unit cost considering the number of workers assembling

evaporators, the required number of evaporators per shift, the amount of

underproduction, and the amount of overproduction.

The simulation model was used to obtain production information for the

evaporator assembly system. Two methods of utilizing production information were

proposed: a direct link with SIMAN to obtain "good cores produced" values and creating

a production data me and simply performing sequential accesses to obtain "good cores

produced" values. Due to enormous time savings, the "good cores produced" values

were assumed normal and a data me containing the mean, standard deviation, station

configuration, and number of pallets ilJl atl possible system configurations was

generated.

www.manaraa.com

71

This research compared the performance of the five proposed heuristics: GAl,

SQGI, SQG2, SQG3, and Tandem. GAl applies a heuristic form of a genetic algorithm,

while SQGI, SQG2, and SQG3 employ a form of a stochastic quasigradient method.

The Tandem algorithm exploits both GAs and SQG methods. Before directly comparing

the optimization algorithms, factorial experiments were utilized to set each heuristic's

operating parameters. The five heuristics were then compared using three different

criteria: the best performance measure, station configuration of optimal solution(s), and

required computer run time.

The results in this research showed that GAl, SQGI, SQG2, and Tandem were

able to fmd one or more solutions sporting near-optimal performance measures. SQG3

did a poor job of fmding a near-optimal solution. In every replicate, GAl, SQG I, SQG2,

and Tandem declared a four worker case optimal. This implies that one of the

configurations containing four workers is probably the global optima. The genetic based

algorithms were more consistent on their choice of the optimal number of pallets than the

SQG based heuristics. The last comparison issue was computer run time. SQG I, SQG2,

and SQG3 were superior to the genetic algorithms in terms of run time because the GAs

required far more production data.

It was stated in previous chapters that the Tandem algorithm was designed to use

a genetic algorithm to identify the main "valleys" on the response surface and then apply

a SQG method to hone in on the lowest point in that "valley." On the average, the

Tandem algorithm provided solutions possessing the smallest performance measure;

however, there was not a statistically significant difference between Tandem, GAl,

SQGI, and SQG2. Even so, the Tandem algorithm was successful in finding near­

optimal solutions for the simulated evaporator assembly system. Another piece of

evidence supporting the positive performance of the Tandem algorithm is the consistency

www.manaraa.com

72

of the number of pallets in the solutions declared optimal. In 8 out of 10 replicates, the

number of pallets was 15. In the other two replicates the number of pallets declared

optimal was 14 and 16. The ranges of the numbers of pallets chosen as optimal for the

other heuristics encompassed 15; however, the other heuristics were not nearly as

consistent as the Tandem algorithm. This consistency presents strong evidence that the

actual optimal solution contains 15 pallets. The performance of the Tandem algorithm

was very favorable in all aspects except relative computer run time. The fact that genetic

algorithms require a lot of time to run is no surprise; Wellman (1991) came to this same

conclusion.

Up to this point, no direct recommendation has been made as to which of the five

heuristics to use. We will now address this issue. The behavior of SQG 1 may not be

reliable in a larger solution space. Considering their construction, SQG2 should be more

robust in a wider range of solution spaces than SQG 1. A larger solution space implies an

expanded evaporator assembly system, or another entirely different system. The

behavior of these algorithms would most likely change in the solution space of a different

problem. The two genetic algorithm based heuristics, GAl and Tandem, provided good

performance measure results but were very computationally inefficient. If one were to

blindly apply one of the algorithms discussed to some similar but different optimization

problem, use Tandem, GAl, or SQG2. If the time required to obtain a performance

measure value for a given set of decision variables is small, then application of the

Tandem algorithm is recommended. The time to evaluate a set of decision variables is

the key factor in deciding 'Yhether to use a genetic algorithm based heuristic.

The operation of genetic algorithms and SQG methods is highly dependent on the

choice of the operating parameters. Optimal parameter settings will vary according to

the solution space. There are two important considerations when using GAs or SQG

www.manaraa.com

73

methods. First, test various combinations of operating parameters using. design of

experiments or other appropriate methods. Second, carefully choose the different

operating parameter settings to test. This involves obtaining a thorough understanding of

the system being studied so knowledgeable choices can be made.

This research has presented two new ideas. The first is the application of

optimization heuristics to parallel server assembly systems. The second new idea is the

tandem application of a genetic algorithm and a stochastic quasigradient method.

Another important aspect of this research is the application of optimization techniques on

a "real world" system.

There are several topics for future research that arise from this study. The

heuristics presented in this research could be applied to larger parallel server systems.

Another possible topic would be to investigate the behavior of other heuristics (e.g.

simulated annealing or optimization homotopy) on the optimization of the assembly

system presented in this research.

www.manaraa.com

74

REFERENCES

Andreasen, M. M., and Ahm T. Flexible Assembly Systems. IFS Publications I Springer­
Verlag, London. 1988.

Bethke, Albert D. "Genetic Algorithms as Function Optimizers." Logic of Computers
Group, Computer and Communication Sciences Department. Technical Report
No. 212. NASA Grant No. NGG-1176. NSF Grant No. MCS76-04297.
April 1978.

Bonomi, E. and Lutton, J. "The N-city Travelling Salesman Problem: Statistical
Mechanics and the Metropolis Algorithm." SIAM Review. Vol. 26, No.4,
Oct 1984. pp.551-568.

Bulgak, A. A., and Sanders, 1. L. "Approximate Analytical Perfromance Model for
Automatic Assembly Systems with Statistical Process Control and Automated
Inspection." Journal of Manufacturing Systems. Vol. 10, No.2. 1991.
pp. 121-133.

Bulgak, A. A., and Sanders, J. L. "Hybrid Algorithms for Design Optimization of
Asynchronous Flexible Assembly Systems with Statistical Process Control and
Repair." Proceedings of the Third ORSAfflMS Conference on Flexible
Manufacturing Systems. Cambridge, MA. August 14-16, 1989. pp.275-281.

Bulgak, A. A., and Sanders, J. L. "Integrating a modified simulated annealing algorithm
with the simulation of a manufacturing system to optimize buffer sizes in
automatic asSembly systems." Proceedings of the 1988 Winter Simulation
Conference. December 12-14, 1988. San Diego, CA. pp.684-690.

Bulgak, A. A., and Sanders, 1. L. "Modeling and Design Optimization of Asynchronous
Flexible Assembly Systems with Statistical Process and Repair." The
International Journal of Flexible Manufacturing Systems. Vol. 3. 1991.
pp.251-274.

\,':/'J Cohoon,1. P., Hegde, S. U., Martin, W. N., Richards, D. "Floorplan Design using
. A Distributed Genetic Algorithms." Proceedings of IEEE International Conference

on Computer-Aided Design: ICCAD 88 a Conference for the EE CAD. IEEE,
New York. 1988. pp.452-455.

\;
Davis, Lawrence (Editor). Handbook of Genetic Algorithms. Van Nostrand Reinhold

Company, New York. 1991.

www.manaraa.com

/0 75

r-:.r

dJfl Davis, Lawrence, and Ritter, Frank. "Schedule Optimization with Probabilistic Search."
Proceedings from The Third Conference on Artificial Intelligence Applications.
IEEE Computer Society Press, New York. 1987. pp.231-236.

V Davis, Lawrence, and Steenstrup, Martha "Genetic Algorithms and Simulated
Annealing: An Overview." Genetic Algorithms and Simulated Annealing (Edited
by Lawrence Davis). Morgan Kaufmann Publishers, Inc., Los Altos, CA. 1987.
pp.l-l1.

Dwiggins, Boyce H. Automotive Air Conditioning. 4th edition. Van Nostrand Reinhold
Company, New York. 1978.

Ermoliev, Yuri. "Facility Location Problem." Numerical Techniquesfor Stochastic
Optimization (Edited by Ermoliev and Wets). Springer-Verlag, New York.
1988. pp. 413-434.

Ermoliev, Yuri M. "On the Method of Generalized Stochastic Gradients and Quasi­
Feyer Sequences." Kibemetika (English Translation). Vol. 5, No.2. 1969.
pp.208-220.

Ermoliev, Yuri. "Stochastic Quasigradient Methods and their Application to System
Optimization." Stochastics. Vol. 9. 1983. pp. 1-36.

Ermoliev, Yuri, and Gaivoronski, Alexei. Stochastic Quasigradient Methods and their
Implementation. Working Paper, WP-84-55. IIASA, Laxenburg, Austria. 1984.

Gemmill, Douglas D. "Optimization Appraoches to the Portfolio Problem." Doctoral
Dissertation. University of Wisconsin, Madison. 1988.

Glover, David E. "Solving a Complex Keyboard Configuration Problem Through
Generalized Adaptive Search." Genetic Algorithms and Simulated Annealing
(Edited by Lawrence Davis) Morgan Kaufmann Publishers, Los Altos, CA.
1987. pp. 13-31.

Glynn, Peter W. "Optimization of Stochastic Systems." Winter Simulation Conference
Proceedings. Washington, D.C. Dec. 8-10, 1986. p.52-59.

V Glynn, Peter W., and Sanders, Jerry L. Monte Carlo Optimization of Stochastic Systems:
Two "lew Approaches. Proceeding of the 1986 ASME Computers in Engineering
Conference.

Goldberg, David E. Genetic Algorithms in Search, Optimization, and Machine Learning.
Addison-Wesley Publishing Company, Reading, Mass. 1989.

www.manaraa.com

lif
76

.~ Goldberg, David E. "Simple Genetic Algorithms and the Minimal, Deceptive Problem."
Genetic Algorithms and Simulated Annealing (Edited by Lawrence Davis).
Morgan Kaufmann Publishers, Los Altos, CA. 1987. pp.75-88.

Grefenstette, John J. "Incorporating Problem Specific Knowledge into Genetic
Algorithms." Genetic Algorithms and Simulated Annealing (Edited by Lawrence
Davis). Morgan Kaufmann Publishers, Los Altos, CA. 1987. pp. 43-60.

"'T (Groover, Mikell P. Automation, Production Systems, and Computer Integrated)
~\'-'-\ Manufacturing. Prentice-Hall, Inc., Englewood Cliffs, N1. 1987.

I;

Gross, Donald, and Harris, Carl M. Fundamentals of Queueing Theory. 2nd edition.
John Wiley & Sons, New York. 1985.

Gupal, A. M., and Norkin, V. I. "Algorithm for the Minimization of Discontinuous
Functions." Kibernetika (English Translation). Vol. 2. 1977. pp.73-75.

Holland, John H. Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan. 1975.

lJi Huntley, Christorpher L., and Browns, Donald E. " A Parallel Heuristic for Quadratic
Assignment Problems." Computers Operations Research. Vol. 18, No.3. 1991.

. pp. 275-289.

y" Kamath, M., and Sanders, J. L. "Analysis of Asychronous Automatic Assembly Systems
with Bottleneck Stations." Proceedings of the SME Systems 1 Conference.
Chicago, IL. March 24-26, 1986.

Kamath, M., Suri, R., and Sanders, J. L. "Analytic Peformance Models for Closed-Loop
Flexible Assembly Systems." The International Journal of Flexible
Manufacturing Systems. Vol. 1. 1988. pp.51-84.

Kirkpatrick, S., Gelatt, C. D. Jr.,and Vecchi, M. P. "Optimization by Simulated
Annealing." Science. Vol. 220, No. 4598. May 13, 1983. pp.671-680.

Kushner, Harold 1. "Stochastic Approximation Algorithms for Constrained Optimization
Problems." The Annals of Statistics. Vol. 2, No. 4~ 1974. pp. 713-723.

Law, A. M., and Kelton, W. D. Simulation Modeling and Systems Analysis. Second
edition. McGraw-Hill, Inc., New York. 1991.

www.manaraa.com

77

Leung, W. K., and Sanders, J. L. "Simulation Analysis of the Performance of Tunnel­
Gated Stations for Free-Transfer Assembly Systems." Journal of Manufacturing
Systems. Vol. 5, No.3. 1986. pp. 191-202.

Lie, Laurensius. "Simulated annealing algorithm applied in the flexible manufacturing
systems design." M.S. Thesis. Iowa State University. 1991.

Liu, Chi-mingo "Stochastic design optimization of asynchronous automaic assembly
systems." Doctoral Dissertation. University of Wisconsin, Madison. 1987.

Liu, C. M., and Chiou, 1. M. "Design and performance evaluation of closed automatic
assembly systems." International Journal of Production Research. Vol. 28,
No.9. 1990. pp. 1577-1593.

V Liu, C. M., and Sanders, J. L. "Approximate design optimization of asynchronous
assembly systems." International Journal of Computer Applications in
Technology. Vol. 2, No.1. 1989. pp.30-37.

Liu, C. M., and Sanders, J. L. "Stochastic Design Optimization of Asynchronous
Flexible Assembly Systems." Annals of Operations Research. Vol. 15. 1988.
pp. 131-154.

Montgomery, Douglas C. Design and Analysis of Experiments. Third edition.
John Wiley & Sons, New York. 1991.

Mullin, John P. Some Practical on Data Analysis for Queueing Systems Analysis.
Working Paper. IMSE Department. Iowa State University. March 29, 1990.

Nevins, James L., and Whitney, Daniel E. Concurrent Design of Products & Processes:
A Strategy for the Next Generation in Manufacturing. McGraw-Hill Publishing
Company, New York. 1989.

Pegden, C. D., Shannon, RE., and Sadowski, R P. Introduction to Simulation Using
SIMAN. McGraw-Hill, Inc., New York. 1990.

/S \J Pettey, C. B., Leuze, M. R, and Grefenstette, 1. 1. "A Parallel Genetic Algorithm."
,/' Genetic Algorithms and Their Applications: Proceedings of the Second
'x~ International Conference on Genetic Algorithms. MIT, Cambridge, MA,

July 28-31, 1987. pp. 155-161.

www.manaraa.com

'vI 78

J)\/ Richardson, J. T., Palmer, M. R., Liepins, G., Hilliard, M. "Some Guidelines for Genetic
Algorithms with Penalty Functions." Proceedings of the Third International
Conference on Genetic Algorithms. George Mason University, June 4-7, 1989.
pp. 191-197.

Schildt, Herbert. Turbo C: The Complete Reference. McGraw-Hill Publishing Company,
Berkeley, CA. 1988.

Schloemer, Paul G. "Let's Get America Back To Business." Industry Week,
Apri16, 1992: 34.

Tandiono, Elly. "Stochastic optimization of cost of automatic assembly systems."
M.S. Thesis. Iowa State University. 1991.

Wellman, Mark A. "A genetic algorithm approach to optimization of asynchronous
automatic assembly systems." M.S. Thesis. Iowa State University. 1991.

www.manaraa.com

79

APPENDIX A

EVAPORATOR ASSEMBLY SYSTEM SIMULATION,

SIMAN MODEL FILE

www.manaraa.com

BEGIN;

npres

pres

80

CREATE, 1,1000:0,1; ! Time ° to 1000 is init time
BRANCH, 1:

ALWAYS,pres;
CREATE, 1,6400:0,1; ! These create statements simulate
BRANCH, 1: ! the working day.

AL W AYS,npres;
CREATE, 1,7180:0,1;
BRANCH, 1:

AL W AYS,pres;
CREATE, 1,13600:0,1;
BRANCH, 1:

AL W AYS,npres;
CREATE, 1,14380:0,1;
BRANCH, 1:

AL W AYS,pres;
CREATE, 1,18700:0,1;
BRANCH, 1:

AL W AYS,npres;
CREATE, 1,20800:0,1;
BRANCH, 1:

AL W AYS,pres;
CREATE, 1,26200:0,1;
BRANCH, 1:

AL W AYS,npres;
CREATE, 1,26980:0,1;
BRANCH, 1:

AL W AYS,pres;
CREATE, 1,29500:0,1; ! builders leave at end of shift
BRANCH, 1:

AL W AYS,npres;
CREATE, 1,31499.9:0,1;
WRITE, PM_OlJfPUT,"(F6.1)":NC(Gcores):DISPOSE;

ASSIGN: oplgone = 1; ! builders on break
ASSIGN: op2gone = 1;
ASSIGN: op3gone= 1;
ASSIGN: op4gone= 1;
ASSIGN: op5gone = 1;
ASSIGN: op6gone = I:DISPOSE;

ASSIGN: oplgone = 0; ! builders working
ASSIGN: op2gone=0;
ASSIGN: op3gone=0;
ASSIGN: op4gone =0;
ASSIGN: op5gone = 0;
ASSIGN: op6gone = O:DISPOSE;

CREATE, 1,0: 1,1; ! Check the number of the last station
BRANCH, 1:

IF,laststa .EQ. 6,16:

www.manaraa.com

81

IF,laststa .EQ. 5,15:
IF,laststa .EQ. 4,14:
IF,laststa .EQ. 3,13:
IF,laststa .EQ. 2,12:
ELSE,l1;

16 ASSIGN: laststa = 6:DISPOSE;
15 ASSIGN: csl2xl2a = 5:DISPOSE;
14 ASSIGN: csllxI2 = 5:DISPOSE;
13 ASSIGN: csl0xli = 5:DISPOSE;
12 ASSIGN: cs9xl0 = 5:DISPOSE;
11 ASSIGN: cs8x9 = 5:DISPOSE;

; ******* TOP OF THE MODEL *******

top ASSIGN: cs7ax7b= 0;
.rps7b; QUEUE,

SCAN:
ASSIGN:

«NQ(rps8)+cs7bx8) .LT. 3) .AND. (lift4 .EQ. 0);
cs7bx8 = 1;

ASSIGN: lift4 = 1; ! indicate lift4 is busy
DELAY: 2.86+0.42+ 1.54; ! P to lift4, lift, and clear
ASSIGN: lift4 = 0; ! indicate lift4 is clear
DELAY: 3.95; ! lift4 proxy to rps8
ASSIGN: cs7bx8 = 0;

QUEUE, rps8;
SCAN: «builtby .EQ. 1) .AND. (NQ(sbI) .EQ. 0) .AND.

(liftS .EQ. 0) .AND. (lift15 .EQ. 0) .AND.
(lift18 .EQ. 0» .OR. «builtby .GT. 1) .AND.
«NQ(rps9)+cs8x9) .LT. 2» .OR. «staistat .EQ.O)
.AND. «NQ(rps9)+es8x9) .LT. 2» .OR. «
staistat .EQ. 2) .AND. (liftS .EQ. 0) .AND.
(builtby .EQ. 0) .AND. (lift15 .EQ. 0) .AND.
(lift18 .EQ. 0) .AND. (NQ(sbI) .EQ. 0» .OR.
«staistat .EQ. 1) .AND. «NQ(rps9)+cs8x9).LT.3)
.AND. (builtby .EQ. 0»;

! This is evaporator core build station 1

BRANCH. 1:
IF,builtby .EQ. I,ToStaI:
IF,builtby .GT. I,PassI:
IF,staistat .EQ. O,PassI:
IF,staistat .EQ. I,PassI:
IF,staistat .EQ. 2,ToStaI;

ToStai ASSIGN:
ASSIGN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:

staistat = 1;
liftS = 1:
lift15 = 1;
lift18 = 1;
3.19; ! liftS to lift15
liftS = 0; ! clear liftS

www.manaraa.com

82

DELAY: 1.31; ! liftl5 to liftlS
ASSIGN: liftl5 = 0; ! clear liftl5
DELAY: 2.04; ! liftlS to proxy
ASSIGN: liftlS = 0; ! clear liftlS
DELAY: 2.1S; ! proxy to sbl
QUEUE, sbl;
SCAN: (NQ(stalbut) .EQ. 0) .AND. (NR(stal) .EQ. 0) .AND.(NQ(olgbold) .EQ. 0);
ASSIGN: stalstat = 2;
QUEUE, sldbuf;
SEIZE: stal;
QUEUE, olgbold;
SCAN: (oplgone .EQ. 0);
BRANCH, 1:

IF,builtby .EQ. O,slnew:
ELSE,slrej;

sInew DELAY: ERLANG(6.0 1 3,3)+49.77; ! build time for new core
BRANCH, I:

ALWAYS,ctnl;
slrej DELAY: EXPO(50.4607)+IS.SS; ! fix rejected core
ctnl RELEASE: stal;

ASSIGN: builtby = I;
QUEUE, sta1 buf;
SCAN: (liftl7 .EQ. 0) .AND. (liftl6 .EQ. 0) .AND.(NQ(rpsl) .EQ. 0);
COUNf: StalJob;
ASSIGN: liftl6 = 1;
ASSIGN: liftl7 = I;
ASSIGN: csl = 1;
DELAY: 1.61+0.42+1.31+0.42+1.55;
ASSIGN: liftl6 = 0;
ASSIGN: liftl7 = 0;
BRANCH, 1:

AL W A YS,Rtl; ! brancb to return track at 1

****** HEADED TO BUILD STATION 2 ******

Pass 1 ASSIGN: csSx9 = I;
DELAY: 7.15; ! travel from rpsS to rps9
ASSIGN: csSx9 = 0;
QUEUE, rps9;
SCAN: «builtby .EQ. 2) .AND. (NQ(sb2) .EQ. 0) .AND.

(lift6 .EQ. 0) .AND. (liftl4 .EQ. 0) .AND.
(lift19 .EQ. 0» .OR. «builtby .GT. 2) .AND.
«NQ(rpslO)+cs9xlO) .LT. 2» .OR. «sta2stat .EQ.
0) .AND. «NQ(rpslO)+cs9xl0) .LT. 2» .OR. «
sta2stat .EQ. 2) .AND. (lift6 .EQ. 0) .AND.
(builtby .EQ. 0) .AND. (liftl4 .EQ. 0) .AND.
(liftl9 .EQ. 0) .AND. (NQ(sb2) .EQ. 0» .OR.
«sta2stat .EQ. 1) .AND. «NQ(rpslO)+cs9xlO)
.LT. 3) .AND. (builtby .EQ. 0»;

BRANCH, 1:

www.manaraa.com

IF,builtby .EQ. 2,ToSta2:
IF,builtby .GT. 2,Pass2:
IF,sta2stat .EQ. O,Pass2:
IF,sta2stat .EQ. I,Pass2:
IF,sta2stat.EQ.2,ToSta2;

ToSta2 ASSIGN: sta2stat = 1;
ASSIGN: lift6 = 1;
ASSIGN: liftl4 = 1;
ASSIGN: liftl9 = 1;

83

DELAY: 1.55+0.42+1.31; ! lift6to liftl4
ASSIGN: lift6 = 0; ! clear lift6
DELAY: 1.31; ! liftl4to liftl9
ASSIGN: liftl4 = 0; ! clear liftl4
DELAY: 0.42+ 1.62; ! liftI9 to proxy
ASSIGN: liftl9 = 0; ! clear liftI9
DELAY: 2.18; ! proxy to sb2
QUEUE, sb2;
SCAN: (NQ(sta2buf) .EQ. 0) .AND. (NR(sta2) .EQ. 0) .AND. (NQ(02ghold) .EQ. 0);
ASSIGN:· sta2stat = 2;
STATION, station2;
QUEUE, s2dbuf;
SEIZE: sta2;
QUEUE, o2ghold;
SCAN: (op2gone .EQ. 0);
BRANCH, 1:

IF,builtby .EQ. O,s2new:
ELSE,s2rej;

s2new DELAY: ERLANG(6.0 1 3,3)+49.77; ! build time for new core
BRANCH, 1:

AL W AYS,ctn2;
s2rej DELAY: EXPO(50.4607)+18.88; ! fIX rejected core
ctn2 RELEASE: sta2;

ASSIGN: builtby = 2;
. QUEUE, sta2buf;

SCAN: (liftl8 .EQ. 0) .AND. (liftI5 .EQ. 0) .AND.«NQ(rpsI7)+rt2xl) .LT. 2);
COUNT: Sta2Job;
ASSIGN: rt2xI = 1;
ASSIGN: liftl5 = I;
ASSIGN: liftl8 = 1;
DELAY: 1.62+0.42+1.31+0.42+1.55;
ASSIGN: liftl5 = 0;
ASSIGN: liftl8 = 0;
BRANCH, 1:

AL W A YS,Rt2; ! branch to return track at2

•••••• HEADED TO BUILD STATION 3 ••••••

Pass2 ASSIGN: cs9xlO = 1;
DELAY: 7.04; ! travel from rps9 to rpslO
ASSIGN: cs9xlO= 0;

www.manaraa.com

84

QUEUE, rpslO;
SCAN: «builtby .EQ. 3) .AND. (NQ(sb3) .EQ. 0) .AND.

(lift7 .EQ. 0) .AND. (liftl3 .EQ. 0) .AND.
(lifaO .EQ. 0» .OR. «builtby .GT. 3) .AND.
«NQ(rpsll)+csIOx1I) .LT. I» .OR. «sta3stat .EQ.
0) .AND. «NQ(rpsll)+csIOxll) .LT. I» .OR. «
sta3stat .EQ. 2) .AND. (lift7 .EQ. 0) .AND.
(builtby .EQ. 0) .AND. (lift13 .EQ. 0) .AND.
(lifaO .EQ. 0) .AND. (NQ(sb3) .EQ. 0» .OR.
«sta3stat .EQ. I) .AND. «NQ(rpsll)+cslOxll)
.LT.2) .AND. (builtby .EQ. 0»;

BRANCH, I:
IF,builtby .EQ. 3,ToSta3:
IF,builtby .GT. 3,Pass3:
IF,sta3stat .EQ. 0,Pass3:
IF,sta3stat .EQ. I,Pass3:
IF,sta3stat .EQ. 2,ToSta3;

ToSta3 ASSIGN: sta3stat = I;
ASSIGN: lift7 = I;
ASSIGN: liftl3 = I;
ASSIGN: lifaO = I;
DELAY: 1.55+0.42+1.31;! lift7 to lift13
ASSIGN: lift7 = 0; ! clear lift7
DELAY: 1.31; ! lift13 to IifaO
ASSIGN: lift13 = 0; ! clear lift13
DELAY: 0.42+1.79; ! lifaO to proxy
ASSIGN: lifaO = 0; ! clear lifaO
DELAY: 2.03; ! proxy to sb3
QUEUE, sb3;
SCAN: (NQ(sta3but) .EQ. 0) .AND. (NR(sta3) .EQ. 0)

.AND. (NQ(03gboId) .EQ. 0);
ASSIGN: sta3stat = 2;
STATION, station3;
QUEUE, s3dbuf;
SEIZE: sta3;
QUEUE, o3gboId;
SCAN: (op3gone .EQ. 0);
BRANCH, I:

IF,builtby .EQ. 0,s3new:
ELSE,s3rej;

s3new DELAY: ERLANG(6.013,3)+49.77;! build time for new core
BRANCH, I:

AL W AYS,ctn3;
s3rej DELAY: EXPO(50.4607)+18.88; ! fIX rejected core
ctn3 RELEASE: sta3;

ASSIGN: builtby = 3;
QUEUE, sta3buf;
SCAN: (lift19 .EQ. 0) .AND. (liftl4 .EQ. 0) .AND.«NQ(rpsI6)+rt3x2) .LT. 2);
COUNf: Sta3Job;

www.manaraa.com

ASSIGN: rt3x2 = I;
ASSIGN: lift14 = I;
ASSIGN: lift19 = I;
DELAY: 1.62+0.42+1.31+0.42+1.55;
ASSIGN: lift14 = 0;
ASSIGN: lift19 = 0;
BRANCH, I:

85

AL W A YS,Rt3; ! brancb to return track at 3

****** HEADED TO BUILD STATION 4 ******

Pass3 ASSIGN: cslOx11 = I;
DELAY: 7.04; ! travel from rpslO to rpsll
ASSIGN: cslOxll = 0;
QUEUE, rpsll;
SCAN: «builtby .EQ. 4) .AND. (NQ(sb4) .EQ. 0) .AND.

(lift8 .EQ. 0) .AND. (lift12 .EQ. 0) .AND.
(lift21 .EQ. 0» .OR. «builtby .GT. 4) .AND.
«NQ(rpsI2)+csllxI2) .LT. I» .OR. «sta4stat .EQ.
0) .AND. «NQ(rpsI2)+csllxI2) .LT. I» .OR. «
sta4stat .EQ. 2) .AND. (lift8 .EQ. 0) .AND.
(builtby .EQ. 0) .AND. (liftl2 .EQ. 0) .AND.
(lift21 .EQ. 0) .AND. (NQ(sb4) .EQ. 0» .OR.
«sta4stat .EQ. I) .AND. «NQ(rpsI2)+csllxI2)
.LT. 2) .AND. (builtby .EQ. 0»;

BRANCH, I:
IF,builtby .EQ. 4,ToSta4:
IF,builtby .GT. 4,Pass4:
IF,sta4stat .EQ. O,Pass4:
IF,sta4stat .EQ. I,Pass4:
IF,sta4stat .EQ. 2,ToSta4;

ToSta4 ASSIGN: sta4stat = I;
ASSIGN: lift8 = I;
ASSIGN: lift12 = I;
ASSIGN: lift21 = I;
DELAY: 1.55+0.42+1.31; ! lift8 to lift12
ASSIGN: lift8 = 0; ! clear lift8
DELAY: 1.31; ! liftl2 to lift21
ASSIGN: lift12 = 0; ! clear lift12
DELAY: 0.42+1.79; ! lift21 to proxy
ASSIGN: lift21 = 0; ! clear lift21
DELAY: 1.96; ! proxy to sb4
QUEUE, sb4;
SCAN: (NQ(sta4buf) .EQ. 0) .AND. (NR(sta4) .EQ. 0) .AND. (NQ(04gbold) .EQ. 0);
ASSIGN: sta4stat = 2;
STATION, station4;
QUEUE, s4dbuf;
SEIZE: sta4;
QUEUE, 04gbold;

www.manaraa.com

86

SCAN: (op4gone .EQ. 0);
BRANCH, 1:

IF,builtby .EQ. O,s4new:
ELSE,s4rej;

s4new DELAY: ERLANG(6.013,3)+49.77;! build time for new core
BRANCH, 1:

AL W AYS,ctn4;
s4rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core
ctn4 RELEASE: sta4;

ASSIGN: builtby = 4;
QUEUE, sta4buf;
SCAN: (lift20 .EQ. 0) .AND. (liftl3 .EQ. 0) .AND. «NQ(rpsI5)+rt4x3) .LT. 2);
COUNT: Sta4Job;
ASSIGN: rt4x3 = 1;
ASSIGN: lift20 = 1;
ASSIGN: liftl3 = 1;
DELAY: 1.62+0.42+ 1.31 +0.42+ 1.55;
ASSIGN: liftl3 = 0;
ASSIGN: lift20 = 0;
BRANCH, 1:

AL W A YS,Rt4; ! branch to return track at 4

****** HEADED TO BUILD STATION 5 ******

Pass4 ASSIGN: csllx12 = 1;
DELAY: 7.05; ! travel from rpsll to rpsl2
ASSIGN: csllxl2 = 0;
QUEUE, rpsl2;
SCAN: «builtby .EQ. 5) .AND. (NQ(sb5) .EQ. 0) .AND.

(lift9 .EQ. 0) .AND. (liftll .EQ. 0) .AND.
(lift22 .EQ. 0» .OR. «builtby .GT. 5) .AND.
«NQ(rpsl2a)+csI2xl2a) .LT. 2».OR.«sta5stat .EQ.
0) .AND. «NQ(rpsl2a)+csI2xl2a) .LT. 2» .OR. «
sta5stat .EQ. 2) .AND. (lift9 .EQ. 0) .AND.
(builtby .EQ. 0) .AND. (liftll .EQ. 0) .AND.
(lift22 .EQ. 0) .AND. (NQ(sb5) .EQ. 0» .OR.
«sta5stat .EQ. 1) .AND. «NQ(rpsl2a)+csI2xl2a)
.LT. 3) .AND. (builtby .EQ. 0»;

BRANCH, 1:
IF,builtby .EQ. 5,ToSta5:
IF,builtby .GT. 5,Pass5:
IF,sta5stat .EQ. 0,Pass5:
IF,sta5stat .EQ. I,Pass5:
IF,sta5stat .EQ. 2, ToSta5;

ToSta5 ASSIGN:
ASSIGN:
ASSIGN:
ASSIGN:
DELAY:

sta5stat = 1;
lift9 = 1;

. liftll=l;
lift22 = 1;
1.55+0.42+ 1.31; ! lift9 to liftll

www.manaraa.com

87

ASSIGN: lift9 = 0; ! clear lift9
DELAY: 1.31; ! liftll to Hft22
ASSIGN: liftll = 0; ! clear liftll
DELAY: 0.42+1.79; ! lift22 to proxy
ASSIGN: lift22 = 0; ! clear lift22
DELAY: 1.96; ! proxy to sb5
QUEUE, sb5;
SCAN: (NQ(sta5but) .EQ. 0) .AND. (NR(sta5) .EQ. O).AND. (NQ(05ghold) .EQ. 0);
ASSIGN: sta5stat = 2;
STATION, station5;
QUEUE, s5dbuf;
SEIZE: sta5;
QUEUE, o5ghold;
SCAN: (op5gone .EQ. 0);
BRANCH, 1:

IF,builtby .EQ. 0,s5new:
ELSE,s5rej;

s5new DELAY: ERLANG(6.013,3)+49.77;! build time for new core
BRANCH, I:

AL W AYS,ctn5;
s5rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core.
ctn5 RELEASE: sta5;

ASSIGN: builtby = 5;
QUEUE, sta5buf;
SCAN: (lift21 .EQ.O) .AND. (liftl2 .EQ. 0) .AND. «NQ(rpsI4)+rt5x4) .LT. 2);
COUNf: Sta5Job;
ASSIGN: liftl2 = I;
ASSIGN: lift21 = I;
ASSIGN: rt5x4 = I;
DELAY: 1.62+0.42+1.31+0.42+1.55;
ASSIGN: liftl2 = 0;
ASSIGN: lift21 = 0;
BRANCH, I:

AL W A YS,Rt5; ! branch to return track at 5

****** HEADED TO BUILD STATION 6 ******

Pass5 ASSIGN: csl2xl2a = I;
BRANCH, I:

IF,(NQ(rpsl2a)+csI2xl2a) .EQ. O,nonein:
ELSE,onein;

nonein DELAY: 7.24; ! rpsl2 to rpsl2a empty queue
BRANCH, I:

AL W AYS,cnt6;
onein DELAY: 5.71; ! rpsl2 to rpsl2a one in queue
cnt6 ASSIGN: csI2x12a = 0;

QUEUE, rpsl2a;
SCAN: (liftlO .EQ. 0) .AND. (NQ(sb6) .EQ. 0);
ASSIGN: liftlO = I;
ASSIGN: sta6stat = I;
DELAY: 1.41+0.42+2.61+0.42+3.83; ! rpsl2a to sb6

www.manaraa.com

88

ASSIGN: liftlO = 0; ! clear liftlO
QUEUE, sb6;
SCAN: (NQ(sta6buf) .EQ. 0) .AND. (NR(sta6) .EQ. O).AND. (NQ(06gbold) .EQ. 0);
ASSIGN: sta6stat = 2;
STATION, station6;
QUEUE, s6dbuf;
SEIZE: sta6;
QUEUE, 06gbold;
SCAN: (op6gone .EQ. 0);
BRANCH, I:

IF,builtby .EQ. 0,s6new:
ELSE,s6rej;

s6new DELAY: ERLANG(6.013,3)+49.77;! build time for new core
BRANCH, I:

AL W AYS,ctn6;
s6rej DELAY: EXPO(50.4607)+18.88; ! fix rejected core
ctn6 RELEASE: sta6;

ASSIGN: builtby = 6;
QUEUE, sta6buf;
SCAN: (lift22 .EQ. 0) .AND. (lift11 .EQ. 0) .AND. «NQ(rpsI3)+rt6x5) .LT. 3);
COUNT: Sta6Job;

**** This is the Return Track ****

Rt5

Rt4

ASSIGN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:

QUEUE,
SCAN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:
DELAY:
ASSIGN:

QUEUE,
SCAN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:
DELAY:
ASSIGN:

rt6x5 = I;
liftll = I;
lift22 = I;
1.62+0.42+1.31+0.42+1.53; ! sta6 to proxy
liftll = 0;
lift22 = 0;
4.01; ! proxy to rpsl3
rt6x5 = 0;

rpsl3;
(lift12 .EQ. 0) .AND. «NQ(rpsI4)+rt5x4) .LT. 3);
rt5x4 = I;
lift12 = I;
3.12; ! rps13 to past lift12
lift12 = 0;
3.93; ! just past lift12 to rpsl4
rt5x4 = 0;

rps14;
(lift13 .EQ. 0) .AND. «NQ(rpsI5)+rt4x3) .LT. 3);
rt4x3 = I;
lift13 = I;
3.12; ! rpsl4 tQ past lift13
lift13 = 0;
4.02; ! just past lift13 to rpsl5
rt4x3 = 0;

www.manaraa.com

Rt3

Rt2

Rtl

QUEUE,
SCAN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:
DELAY:
ASSIGN:

QUEUE,
SCAN:
ASSIGN:
ASSIGN:
DELAY:
ASSIGN:
DELAY:
ASSIGN:

QUEUE,
SCAN:
ASSIGN:
DELAY:

89

rpsl5;
(lift14 .EQ. 0) .AND. «NQ(rpsI6)+rt3x2) .LT. 3);
rt3x2 = 1;
lift14 = 1;
3.12; ! rps15 to past lift14
lift14 = 0;
4.03; ! just past lift14 to rps16
rt3x2 = 0;

rpsl6;
(lift15 .EQ. 0) .AND. «NQ(rpsI7)+rt2xl) .LT. 3);
rt2xl = 1;
lift15 = 1;
3.12; ! rps16 to past lift15
lift15 = 0;
4.02; ! just past lift15 to rps17
rt2xl = 0;

rpsl7;
(lift16 .EQ. 0) .AND. (NQ(rpsl) .EQ. 0) .AND. (csl .EQ. 0);
csl = 1;
3.12; ! clear lift 16

"'''''''** Entering the Unload Loop *"''''''''''

DELAY: 1.71;
ASSIGN: csl = 0;

QUEUE, rpsl;
SCAN: (NR(vpa) .EQ. 0) .AND. (NQ(vpabuO .EQ. 0);
DELAY: 3.26;
QUEUE, dbvpa; ! dummy buffer for vision prealign
SEIZE: vpa; ! seize vision prealign
DELAY: ERLANG(0.1110897,3) + 3.31;
RELEASE: vpa; ! release vision prealign
QUEUE, vpabuf; ! hold pallet for vision system
SCAN: (NR(vision) .EQ. 0) .AND. (NQ(visbuO .EQ. 0);
DELAY: 1.80;

QUEUE, dbvision; ! dummy buffer for vision system
SEIZE: vision; ! seize vision system
ASSIGN: status = 0; ! clear pallet status
BRANCH, 1:

WITH,0.985,Accept:
WITH,O.O 15,Reject;

Reject DELAY: UNihiRM(8.21,9.00);
ASSIGN: status = 1; ! set rejected pallet status
COUNT: Bcores;
BRANCH, 1:

AL W A YS,Cont;
Accept DELAY: ERLANG(0.072442,8) + 5.26;

www.manaraa.com

Cont

90

ASSIGN: builtby = 0;
COUNT: Gcores;

RELEASE: vision; ! release vision system station
QUEUE,
SCAN:
DELAY:

visbuf; ! hold pallet for vision system
(NQ(rps2buf) .EQ. 0) .AND. (NR(rps2) .EQ. 0);
3.33;

QUEUE, dbrps2; ! dummy buffer for chip read
SEIZE: rps2; ! seize rps2 chip read
DELAY: 1.08; ! read chip info from pallet
RELEASE: rps2; ! release rps2 chip read
QUEUE, rps2buf; ! hold for clear rps3
SCAN: NQ(rps3) .EQ. 0;
DELAY: 5.00;

QUEUE,
SCAN:
DELAY:

QUEUE,
SCAN:
DELAY:

rps3;
NQ(spsI) .EQ. 0; ! see if spsI is clear

1.61; ! go to spsI

spsI;
(NR(band) .EQ. 0) .AND. (NQ(bandbut) .EQ. 0);
2.94; ! sps delay time + travel time

QUEUE, dband; ! dummy buffer for bander
SEIZE: band; ! seize banding station
BRANCH, .1:

IF,status .EQ. I,BadI:
ELSE,GoodI;

Good 1 DELAY: 5.94; ! constant banding time
BRANCH, 1:

AL W A YS,Cont2;
Badl DELAY: 1.08; ! regular chip read time
Cont2 RELEASE: band;

QUEUE, bandbuf; ! Used in initialization also
SCAN: (liftl .EQ.O) .AND. (NQ(rps4) .LT. 2);
ASSIGN: lift! = 1;
DELAY: 4.93; ! H to liftl proxy wI lift time
ASSIGN: lift! = 0;
DELAY: 3.13; ! Just past lift! to rps4
QUEUE, rps4;
SCAN: NQ(rps5) .LT. 2;

DELAY:
QUEUE,
SCAN:
ASSIGN:
DELAY:
ASSIGN:
DELAY:
QUEUE,

5.36; ! Trovel from rps4 to rps5
rps5;

(lift2 .EQ. 0) .AND. (NQ(rps6) .EQ. 0);
lift2 = 1;
5.04; ! J to lift2 proxy wI lift time
lift2 = 0;
1.43; ! proxy switch to K
rps6;

www.manaraa.com

SCAN:
DELAY:
QUEUE,
SCAN:
DELAY:
QUEUE,
SCAN:
DELAY:

91

NQ(sps2) .EQ. 0; ! wait for sps2 to be clear
1.65; ! move to sps2
sps2;

(NQ(rps7) .EQ. 0);
2.82;
rps7;

(NQ(ulbuO .EQ. 0) .AND. (NR(unload) .EQ. 0);
8.72;

QUEUE, duload; ! dummy buffer for unload
SEIZE: unload; ! seize unload station
BRANCH, 1:

IF,status .EQ. I,Bad2:
ELSE,Good2;

Good2 DELAY: 4.98; ! constant unload time
BRANCH, 1:

AL W AYS,Cont3;
Bad2 DELAY: 1.08; ! regular chip read time
Cont3 RELEASE: unload;

QUEUE, ulbuf;
SCAN: (lift3 .EQ. 0) .AND. «NQ(rps7a)+cs7x7a) .LT. 3);
ASSIGN: cs7x7a = 1;
ASSIGN: lift3 = 1;
DELAY: 6.65; ! unload to lift3 proxy wI lift time
ASSIGN: lift3 = 0;
DELAY: 3.32; ! lift3 proxy to rps7a
ASSIGN: cs7x7a = 0;
QUEUE, rps7a;
SCAN: (NQ(rps7b)+cs7ax7b) .LT. 3;
ASSIGN: cs7ax7b = 1;
DELAY: 2.58;
BRANCH, 1:

AL W A YS,top; ! Enter the station feeder loop
END;

www.manaraa.com

92

APPENDIXB

EVAPORATOR ASSEMBLY SYSTEM SIMULATION,

SIMAN EXPERIMENT FRAME

www.manaraa.com

BEGIN;

ATIRIBUfES: 1,builtby,0:
2,StartTime:
3,status;

VARIABLES: liftl,O:
lift2,O:
lift3,O:
lift4,0:
lift5,O:
lift6,O:
lift7,0:
lift8,O:
lift9,O:
liftlO,O:
liftl1,0:
lift12,0:
liftl3,0:
liftl4,0:
lift15,0:
liftl6,0:
liftl7,0:
liftl8,0:
lift19,0:
lift20,0:
lift2I,O:
lift22,0:
stalstat,2:
sta2stat,2:
sta3stat,2:
sta4stat,2:
sta5stat,2:
sta6stat,2:
laststa,6:
csl,O:
cs7x7a,0:
cs7ax7b.O:
cs7bx8.0:
cs8x9.0:
cs9xlO.0:
cs lOx 1 1,0:
csllxl2,O:
cs12x12a,0:
rt6x5.0:
rt5x4.0:
rt4x3.0:
rt3x2,0:
rt2xl.O:
oplgone.l:
op2gone,I:

93

www.manaraa.com

STATIONS:

QUEUES:

op3gone,1:
op4gone,l:
op5gone,1:
op6gone,l;

station 1:
station2:
station3:
station4:
station5:
station6:
vision-prealign:
vision_system:
chip_read:
core_bander:
unload_core;

1,rps8, FIFO:
2,rps9, FIFO:
3,rpslO, FIFO:
4,rpsll, FIFO:
6,rps12, FIFO:
7,rps12a, FIFO:
8,rps13, FIFO:
9,rps14, FIFO:
1O,rps15, FIFO:
1l,rps16, FIFO:
12,rps17, FIFO:
13,stalbuf, FIFO:
14,sta2buf, FIFO:
15,sta3buf, FIFO:
16,sta4buf, FIFO:
17,sta5buf, FIFO:
18,sta6buf, FIFO:
19,sldbuf, FIFO:
20,s2dbuf, FIFO:
21,s3dbuf, FIFO:
22,s4dbuf, FIFO:
23,s5dbuf, FIFO:
24,s6dbuf, FIFO:
25,sb1, FIFO:
26,sb2, FIFO:
27,sb3, FIFO:
28,sb4, FIFO:
29,sb5, FIFO:
30,sb6, FIFO:

31,rps1, FIFO:
32,dbvpa, FIFO:
33, vpabuf, FIFO:
34,dbvision,FIFO:

94

•

www.manaraa.com

35,visbuf, FIFO:
36,dbrps2, FIFO:
37,rps2buf, FIFO:
38,rps3, FIFO:
39,spsl, FIFO:
4O,dband, FIFO:
41,bandbuf, FIFO:
42,rps4, FIFO:
43,rps5, FIFO:
44,rps6, FIFO:
45,sps2, FIFO:
46,rps7, FIFO:
47,duload, FIFO:
48,ulbuf, FIFO:
49,rps7a, FIFO:
50,rps7b, FIFO:
51,olgbold, FIFO:
52,o2gbold, FIFO:
53,o3gbold, FIFO:
54,04gbold, FIFO:
55,o5gbold, FIFO:
56,06gbold, FIFO;

RESOURCES: l,stal:

ARRIVALS:

2,sta2:
3,sta3:
4,sta4:
5,sta5:
6,sta6:
7,vpa:
8,vision:
9,rps2:
lO,band:
II,unload;

I,QUEUE(bandbuf),O,1:
2,QUEUE(bandbuf), 10, 1 :
3,QUEUE(bandbuf),20,1 :
4,QUEUE(bandbuf),30,1:
5,QUEUE(bandbuf),40,1 :
6,QUEUE(bandbuf),50,1:
7,QUEUE(bandbuf),60,I:
8,QUEUE(bandbuf), 70,1:
9,QUEUE(bandbuf),80,1:
10,QUEUE(bandbuf),90,1 :
II,QUEUE(bandbuf),I00,I:
12,QUEUE(bandbuf),llO,1 :
13,QUEUE(bandbuf), 120,1:
14,QUEUE(bandbuf),130,1:
15,QUEUE(bandbuf), 140, 1:

95

www.manaraa.com

16,QUEUE(bandbut), 150, 1:
17,QUEUE(bandbut), 160, 1:
18,QUEUE(bandbut),170,1:
19,QUEUE(bandbut),180,1:
20,QUEUE(bandbut), 190, 1:
21,QUEUE(bandbut),200,I:
22,QUEUE(bandbut),210,1;

COUNfERS: 1,StalJob:
2,Sta2Job:
3,Sta3Job:
4,Sta4Job:
5,Sta5Job:
6,Sta6Job:
7,Bcores:
8,Gcores;

Fll..ES: PM_OUfPtIT, "PM.OtIT" ,SEQ,FRE;

REPLICATE, 5,0,31500;

END;

96

www.manaraa.com

97

APPENDIXC

TANDEM ALGORITHM MASTER PROGRAM,

C SOURCE CODE

www.manaraa.com

98

/* tandem.c -- This is the driver file for the tandem algorithm.
This algorithm calls GAl.EXE and SQG4.EXE.

GAl.EXE implements a simple genetic algorithm to optimize
the station configurations in the assembly system.

SQG4.EXE takes the station configurations which GAl.EXE
wrote into TAND.DAT and then optimizes the number of
pallets. The SQG method is applied to each of the station
configurations found by the simple genetic algorithm.

Masters Thesis Work
Kraig A. Downs
IMSE, Iowa State University
Spring 1993

*1

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

FILE *fpout, *fpinl, *fpin2;

mainO
{

}

intro_to_screenO;
printf("\n\n Genetic Algorithm executing ... h);
spawnl(P _WAIT," gal.exe" ,NULL);
printf("\n\n SQG Algorithm executing ... h);
spawnl(P _WAIT, "sqg4.exe" ,NULL);
printf("\n\n\n The program has finished, \n");
printf(" cbeck TAOUT.DAT for the results.\n\n");

intro_to_screenO
1* This functions prints an introduction to the screen */

{
clrscrO;

}

printf("\n THE TANDEM ALGORITHM\n\n");
printf(" By: Kraig Downs\n");
printf(" Master of Science - Thesis, 1993\n\n\n");
printf("\n GAl.EXE will place data in TAND.DAT\n");
printf(" The final output data will be placed in TAOUT.DAT\n");
printf("\n\n Please wait while the program is operating ... H);

www.manaraa.com

99

APPENDIXD

TANDEM ALGORITHM SLAVE PROGRAM,

IMPLEMENTATION OF A GENETIC ALGORITHM,

C SOURCE CODE

www.manaraa.com

100

/* ga1.c -- a simple genetic algorithm
This genetic algorithm is the simple genetic algorithm (SGA)
which is described in the following text:

"Genetic Algorithms in Search, Optimization,
and Machine Learning"

David E. Goldberg
Addison-Wesley Publishing
1989

This program is the ftrst portion of the tandem algorithm. This program
is designed to supply good station conftgurations. The SQG part of the
tandem algorithm, looks at number of pallets.

This program is part of the research done to fulftll the requirements
for a Master of Science degree in Industrial Engineering.

Programming by :
Kraig Downs
IMSEDept
Iowa State University
1993 */

#include <stdio.h>
#include <stdlib.h>
#include <process.h>

struct individual
{
int chromo[12]; /* genotype = bitstring */
int x[3]; /* phenotype = 2 integers */
float fttness; /* objective function value */
int parenti; /* parent number 1 */
int parent2; /* parent number 2 */
int cross_site; /* cross-over site */

} 0Idpop[80],newpop[80];

/* variable declarations * /

/* The four random number generators used in this program (rlnumO,
r2numO, r3numO, r4numO) are derived from the published work listed
below.

*/

"Some EffIcient Random Number Generators for Micro-Computers"
Thesen, Sun, and Wang
Department of Industrial Engineering, University of Wisconsin-Madison
Proceedings of the 1984 Winter Simulation Conference

float rlnum(void); /* random number generator #1 */
float r2num(void); /* random number generator #2 *1
float r3num(void); /* random number generator #3 */

www.manaraa.com

101

float r4num(void); 1* random number generator #4 *1

iot popsize,gen,maxgen;
float peross,pmutation,sumfitness;
int nmutation,ncross,jcross;
float avg,max,min;
long seedl,seed3,seed4; 1* global mg seeds *1
int seed2;
float req,upel,upe2;

FaE *fpout;

mainO
{
int i;

upel = 1.0;
upe2= 0.25;
req = 1368.0;

printf("\n\n Input a random seed -> ");
scanf("%1i",&seedl);
popsize = 60; 1* WARNING!! This must be an even number. *1
maxgen= 10;
pcross = 0.6; 1* crossover probability *1
pmutation = 0.02; 1* mutation probability *1

nmutation = 0;
ncross = 0;
gen=O;

1* open global output me *1
if«fpout=fopen("tand.dat", "w"» = NULL)

{
printf("Unable to open TAND.DAT file !!\n\n");
exit(1);

}
create_init-POpulationO;
statistics(oJdpop);
1* generate_inicreport(); *1
I*debuggit(oldpop); *1
l*fcIose(fpout); *1
l*exit(1);*1
for (i=l; k=maxgen; i++)

{

}

gen++;
generationO;
statistics(newpop);
1* report(); *1
copy_new _into_old(oldpop,newpop);

www.manaraa.com

102

sc_np_outO; 1* outputs final station configs and respective # of pals *1
fclose(fpout);
}

copy_new _into_old(oldpop,newpop)
struct individual oldpop[80];

{

}

struct individual newpop[80];
1* This function copies the newpop into the oldpop, thus readying

the population for the next generation.
*1

int i,j;

for (i=I; k=popsize; i++)
{

}

for 0=1; j<=ll; j++)
oldpop[iJ.cbromo[j] = newpop[iJ.cbromo[j];

oldpop[i].x[lJ = newpop[i].x[I];
oldpop[iJ.x[2] = newpop[i].x[2];
oldpop[iJ.fitness = newpop[iJ.fitness;
oldpop[i].parentl = newpop[iJ.parent1;
oldpop[i].parent2 = newpop[i].parent2;
oldpop[iJ.cross_site = newpop[i].cross_site;

int selecUndividual(work-POp)
struct individual work-POp[80];

{

1* This function is responsible for the selection of a
single individual using a modified roulette wheel
selection method. This function is transformed to
accommodate a minimization problem. *1

int i,pop_index; 1* population index *1
float rpw,partial_sum; 1* random point on wheel, partial sum *1
float tsf; 1* transformed sumfitness for min problem *1
float tfv; 1* transformed fitness value for min problem *1

partial_sum = 0.0;
pop_index = 1;
tsf= 0.0;
for (i=I; k=popsize; i++)

tsf = tsf + (sumfitnesslwork-POp[i].fitness);
rpw = rlnumO * tsf;
tfv = (sumfitnesslwork-POp[pop_index].fitness);
partial_sum = partial_sum + tfv;
while «rpw >= partial_sum) && (pop_index < popsize»

{

www.manaraa.com

}

tfv = (sumfitnesslwork_pop[pop_index].fitness);
partiaCsum = partial_sum + tfv;

return pop_index;
}

int flip{pcross)
float pcross;

103

/* returns 1 with probability pcross, zero otherwise. */
{

}

float mdnum;
mdnum = rlnumO;
if (mdnum <= pcross)

return 1;
else

return 0;

int find_x_siteO
1* Selects a random integer between 1 and 10 inclusive. We are

looking for the gap between 2 alleles. "'/

int num,randint;

(int)randint = rlnumO*32767;
num = (randint%lO) + 1;
return num;
}

crossover(parentl,parent2,childl,child2)
int parentI [I2],parent2[I2],chlldi [I2].child2[I2];

/* This function determines whether a cross is going to occur
and then performs the cross.

*/

intj;

if (flip(pcross»
{

}

jcross = find_x_siteO; /* assumes constant chromosome length */
ncross = ncross + 1;

else
jcross = 11;

for (j=I;j<=jcross;j++)
{
childl[j] = mutation(parentI[j]);

www.manaraa.com

child2UJ = mutation(parent2U]);
}

if Gcross != 11)
{

}
}

for G=jcross+ l;j<= 11;j++)
{

childlUJ = mutation(parent2U]);
child2UJ = mutation(parentlO1);

int mutation(alleleval)
int alleleval;

104

1* This function mutates an allele with pmutation probability
and updates mutation counter if a mutation occurs. */

{
int mutate;
mutate = flip(pmutation); /* mutate with pmutation probability */
if (mutate) 1* Change the allele value */

{

}

nmutation = nmutation + 1;
if (alleleval)

return 0;
else

return I;

else
return alleleval; /* No change occurred */

}

generationO

{

/* This function creates a new generation using select. crossover,
and mutation. This function (generationO) assumes an even
numbered population size. */

int j,mate1 ,mate2;

j=l;
whileG<=popsize)

{
1* select a pair of mates *1
matel = selecUndividual(oldpop);
mate2 = selecUndividual(oldpop);
/* crossover and mutations achieved by crossover() */
crossover(oldpop[mate I].chromo,oldpop[mate2] .chromo,

www.manaraa.com

105

newpop[j].chromo,newpop[j+ I].chromo);

}
}

'* Decode string, evaluate fitness, and record parentage date on both
children *'

newpop[j].x[I] = decode_station30nfig(newpop[j].chromo);
newpop[j] .x[2] = decode_num_oCpallets(newpop[j] .chromo);
seCfitness_ value(newpop,j);
newpop[j].parentl = matel;
newpopUJ.parent2 = mate2;
newpop[j].cross_site = jcross;

newpop[j+ 1].x[1] = decode_station30nfig(newpop[j+ I].chromo);
newpop[j+ I] .x[2] = decode_num_oCpallets(newpop[j+ I] .chromo);
seCfitness_ value(newpop.j+ 1);
newpop[j+I].parentl = matel;
newpop[j+I].parent2 = mate2;
newpop[j+I].cross_site = jcross;

j=j+2; '* Increment population index *'

int decode_station_config(station_config)
int station_config[12];

'* This function decodes the station configuration *'
{
int b32,bI6,bS,b4,b2,bl,bsum;

b32 = station30nfig[I]*32;
bl6 = station_config[2] * 16;
bS = station_config[3]*S;
b4 = station30nfig[4]*4;
b2 = station_config[5]*2;
bl = station_config[6] * I;
bsum = b32+bl6+b8+b4+b2+bl;
return bsum;
}

int decode_num_oCpallets(station_config)
int station_config[12];

'* This function decodes the number of pallets *'

iot b 16,b8,b4,b2,b I,bsum;

bl6 = station_config[7]*16;
b8 = station_config[S]*S;
b4 = station_config[9]*4;
b2 = station_config[1O]*2;

www.manaraa.com

bl = station_config[ll] * I;
bsum = bl6+bS+b4+b2+bl;
return bsum;
}

seCfitness_ value2(work-POp,index)
struct individual work_pop[SO];
int index;

106

I*This function scans the data file for the number of good
cores produced by a given system configuration. It also
calculates the performance measure using the average value
for production rates. *1

{
FILE *fp;
float avg...,gc,pm,oprate,hrs_pecshift;
float numbecoCoperators;
int config,pals,legal,mp,np;

oprate = 15.00;
hrs-J>ecshift = 8.0;

mp = max-pallets(work_pop,index);
np = decode_num_oCpallets(work_pop[index].chromo);
if «np > mp)lI(work_pop[index].x[2] = O)II(work_pop[index].x[l]))

{
legal=O;
avg...,gc = I; 1* illegal number of pallets gets low production rate *1

}
else

legal=l;
if (legal)

{

}

if«fp=fopen("simavg.dat", "r"» = NULL)
{

}

printf("Cannot open SIMA VG.DAT file ! !\o\o");
exit(l);

fscanf(fp, "%f%d%d\o" ,&avg...,gc,&config,&pals);
while«config != work_pop[index].x[1])II(pals != work-POp[index].x[2]))

fscanf(fp, "%f%d%d\n" ,&avg...,gc,&config,&pals);
fclose(fp);

numbecoCoperators = work-POp[index].chromo[l] + work-POp[index].chromo[2] +
work-POp[index].chromo[3] + work-POp[index].chromo[4] +
work-POp[index].chromo[5] + \. "'_:"-r"Op[index].chromo[6];

if «numbecoCoperators = 0)II(work-POp[index].x[2] = 0»
{
numbecoCoperators = 10; 1* big penalty for no operator case *1
avg...,gc = 1; 1* minimum production for no operator case *1

}

www.manaraa.com

107

pm = (oprate '" hrs_pecshift '" number_oCoperators)/avWc;
work-POp[index).fitness = pm;
}

seCfitness_ value(work_pop, index)
struct individual work_pop[80);
int index;

{

I'" This function scans the data file for the number of good
cores produced by a given system configuration. It also
calculates the performance measure using a Normal
random variate using the parameters created from the
5 replications. "'I

FILE "'fp;
float mean,sdev,prod,pm,oprate,hrs_pecshift;
float numbecoCoperators,mp,np,nrv ,sum;
int config,pals,legal,i;

oprate = 15.00;
hrs_pecshift = 8.0;

mp = max_pallets(work_pop,index);
np = decode_num_oCpallets(work-POp[index).chromo);
if «np > mp)lI(work_pop[index).x[2) = O)II(work_pop[index].x[l) = 0»

{
legal=O;
nrv=l; 1* illegal number of pallets gets low production rate *1

}
else

legal=l;
if (legal)

{

}

if«fp=fopen("simnorm.dat", "r"» = NULL)
{

printf("Cannot open SIMNORM.DAT file !!\o\o");
exit(1);

}
fscanf(fp,"%f%f%d%d\o",&mean,&sdev,&config,&pals);
wbile«config != work_pop[index).x[I])II(pals != work_pop[index].x[2]))

fscanf(fp, "%f%f%d%d\o" ,&mean,&sdev,&config,&pals);
fclose(fp);
I'" create a normal random variate "'I
sum = -6.0;
for (i=I; k=12; i++)

:...... -sum + rlnumO;
nrv = (sum'" sdev) + mean;

numbecoCoperators = work-POp[index).chromo[l) + work_pop[index).chromo[2) +
work-POp[index].chromo[3) + work_pop[index].chromo[4) +
work_pop[index].chromo[5] + work-POp[index].chromo[6];

www.manaraa.com

108

if «numbecoCoperators = 0)II(work_pop[index].x[2] = 0»
{
numbecoCoperators = 10; '* big penalty for no operator case *'
nrv = 1; '* minimum production for no operator case *'

}
pm = (oprate * hrs_pecshift * numbecoCoperators)'nrv;
work-POp[index].fiUless = pm;
}

seCfiUless_ value 1 (work_pop,index)
struct individual work_pop[80];
int index;

{

'* This function scans the data file for the number of good
cores produced by a given system cOnfiguration. It also
calculates the performance measure using a Normal
random variate using the parameters created from the

5 replications. *'
FILE *fp;
float mean,sdev,prod,pm,oprate,hrs_pecshift;
float numbecoCoperators,mp,np,nrv ,sum;
int config,pals,legal,I;
float penalty,rr;

oprate = 15.00;
hrs~cshift = 8.0;

mp = max-pallets(work_pop,index);
np = decode_num_of-pallets(work_pop[index].chromo);
if «np > mp)II(work_pop[index].x[2] = O)II(work_pop[index].x[l] = 0»

{
legal=O;
nrv=l; '* illegal number of pallets gets low production rate *'

}
else

legal=l;
if (legal)

{
if«fp=fopen("simnorm.dat", "r"» = Nill..L)

{

}

printf("Cannot open SIMNORM.DAT file !!\n\n");
exit(l);

fscanf(fp, "%f%f%d%d\n" ,&mean,&sdev,&config,&pals);
while«config != work_pop[index].x[IDII(pals != work-POp[index].x[2]))

fscanf(fp, "%f%f%d%d\n" ,&mean,&sdev ,&config,&pals);
fclose(fp); '* create a normal random variate *'
sum = -6.0;
for (i=l; k=12; i++)

www.manaraa.com

109

sum = sum + rlnum();
nrv = (sum * sdev) + mean;

}
numbecoCopemtors = work_pop[index].chromo[1] + work_pop[index].chromo[2] +

work_pop[index].chromo[3] + wor~p[index].chromo[4] +
work-POp[index].chromo[5] + work_pop[index].chromo[6];

if «number_oCopemtors = 0)II(work-POp[index].x[2] = 0»
{
number_oCopemtors = 10; 1* big penalty for no opemtor case *1
nrv = 1; /* minimum production for no operator case *1

}
rr = nrv/req;
if (rr<=1.0) penalty = (upc1 * (req - nrv»/nrv;
else penalty = (upc2 * (nrv - req»/nrv;
pm = (opmte * hrs-pccshift * numbecoCopemtors)/nrv;
pm = pm + penalty;
work_pop[index].fitness = pm;
}

seCfitness_ value4(work-POp,index)
struct individual work-POp[80];
int index;

{

1* This function scans the data file for the number of good
cores produced by a given system configumtion. It also
calculates the performance measure using the average value
for production mtes. */

FILE *fp;
float avuc,pm,opmte,hrs-pccshift;
float numbecoCoperators,rr,penalty;
int config,pals,legal,mp,np;

oprate = 15.00;
hrs-pcr_shift = 8.0;

mp = max-paIlets(work-POp,index);
np = decode_num_of-paIlets(work-POp[index].chromo);
if «np > mp)lI(work-POp[index].x[2] = O)lIwork-POp[index].x[l] = 0)

{
legal=O;
avuc = 1; 1* illegal number of pallets gets low production rate *1

}
else

legal=l;
if (legal)

{
if({fp=fopen("simavg.dat", "r"» = NULL)

{
printf("Cannot open SIMAVG.DAT file !!\o\n");
exit(1);

www.manaraa.com

}

110

}
fscanf(fp, "%f%d%d\n" ,&avwc,&config,&pals);
while«config != work-POp[index].x[I])II(pals != work-POp[index].x[2]))

fscanf(fp, "%f%d%d\n" ,&avwc,&config,&pals);
fclose(fp);

numbecoCopemtors = work-POp[index].chromo[1] + work_pop[index].chromo[2] +
work-POp[index].chromo[3] + work-POp[index].chromo[4] +
work_pop[index].chromo[5] + work-POp[index].chromo[6];

if «number_oCopemtors = 0)II(work-POp[index].x[2] = 0»
{

}

numbecoCoperators = 10; 1* big penalty for no operator case *1
avwc = 1; 1* minimum production for no operator case *1

rr = avwclreq;
if (rr<=l.O) penalty = (upel * (req - avwc»/avwc;
else penalty = (upe2 * (avwc - req»/avWc;
pm = (oprate * hrs-J>ecshift * numbecoCoperators)/avwc;
pm = pm + penalty;
work-POp[index].fitness = pm;
}

create_init-POpulationO
1* This function creates the initial population of strings.

Strings are randomly created.
*1

int xl,x2;

for (xl=l; xl<=popsize; xl++)
{

}

for (x2=1; x2<=1l; x2++)
oldpop[xl].chromo[x2] = flip(0.5);

oldpop[xl].x[1] = decode_station30nfig(oldpop[xl].chromo);
oldpop[xl].x[2] = decode_num_oCpallets(oldpop[xl].chromo);
secfitness_ value(oldpop,x I);
oldpop[xl].parentl = 0;
oldpop[x1].parent2 = 0;
oldpop[xl].cross_site = 0;

int max-pallets(work-POp.index)
struct individual wuuevop[80];
iut index;

1* This function calculates the maximum number of pallets allowed

*1

for a given station configuration. The absolute maximum number
of pallets is 31.

www.manaraa.com

111

int xl ,x2,i,num_sta_op,laststa,maxpals;

num_sta_op = work_pop[index].chromo[l] + work_pop[index].chromo[2]+
work...,pop[index].chromo[3] + work...,pop[index].chromo[4]+
work_pop[index].chromo[5] + work_pop[index].chromo[6];

laststa = 0;
laststa = work_pop[index].chromo[6]=1 ? 1 : Iaststa;
Iaststa = work_pop[index].chromo[5]=1 ? 2: laststa;
laststa = work_pop[index].chromo[4]=1 ? 3: laststa;
laststa = work...,pop[index].chromo[3]=1 ? 4: Iaststa;
laststa = work...,pop[index].chromo[2]=1 ? 5: laststa;
Iaststa = work...,pop[index].chromo[1]=1 ? 6 :]aststa;
x2= 10;
switch(laststa)

{
case 6: xl = 10;

break;
case 5: xl =8;

break;
case 4: xl =7;

break;
case 3: xl =6;

break;
caSe 2: xl =4;

break;
case 1: xl :.2;

break;
case 0: xl = 1;

break;
}

maxpals = (2"'num_sta_op) + xl + x2;
if (maxpals = 32) maxpals=31;
return maxpals;
}

generate_init_reportO

{

'''' This function is used to generate a header in the output file
which gives all the initial system parameters.

""

fprintf(fpout."The Application of a Genetic Algorithm to the Optimization\o");
fprintf(fpout. "of an Asynchronous Semi-Automatic Assembly System.\o\o");
fprintf(fpout. " Kraig A. Downs\o");
fprintf(fpout." Thesis Work\O");
fprintf(fpout." Spring 1993\0\0\0");
fprintf(fpout. "Summary of Parameters\o");
fprintf(fpout." Population Size: %d\o".popsize);

www.manaraa.com

112

fprintf(fpout," Chromosome Length is fixed at l1.\n");
fprintf(fpout," Maximum number of generations: %d\n",maxgen);
fprintf(fpout," Crossover probability: %f\n",pcross);
fprintf(fpout," Mutation probability: %f\n\n\n",pmutation);
fprintf(fpout, "Initial Population Statistics\n");
fprintf(fpout," Initial population minimum fitness: %f\n",min);
fprintf(fpout," Initial population maximum fitness: %f\n",max);
fprintf{fpout," Initial population average fitness: %f\n",avg);
fprintf(fpout, " Initial population sum of fitness : %f\n" ,sumfitness);
fprintf(fpout, "\n\n\n\n\n\n\n\n");
}

statistics(work-POp)

{

}

struct individual work-POp[80];
/* This function calculates population statistics for a generation. */

int i;

sumfitness = work-POp[l].fitness;
min = work-POp[l].fitness;
max = work-POp[l].fitness;
for (i=2; k=popsize; i++)

{

}

sumfitness = sumfitness + work-POp[i].fitness;
if (work-POp[i].fitness > max)

max = worlCpop[i].fitness; /* set new max */
if (work_pop[i].fitness < min)

min = work-POp[i].fitness; /* set new min */

avg = sumfitnesslpopsize; /* calculation of average */

sc_np_outO
/* This function outputs the station configurations and the number

of pallets of the individuals in the final population.
*/

int i;
fprintf(fpout, "%d\n" ,popsize);
for (i=l; k=popsize; i++)

fprintf(fpout, "%d %d\n",newpop[i].x[1],newpop[i].x[2]);
} .

reportO
/* This function creates the generation reports used to view

the results from the genetic algorithm.
*/

www.manaraa.com

113

int i;

fprintf(fpou t, II --\n");
fprintf(fpout," Population Report\n");
fprintf(fpout," Genemtion %d Genemtion %d\n",gen-l,gen);
fprintf(fpout," # Individual SC NP Fitness # Parents XS Individual SC NP Fitness\Il");
fprintf{fpout, "---\n ");
for (i=l; k=popsize; i++)

(
fprintf(fpout."%3d: %ld%ld%ld%ld%ld%ld%ld%ld%ld%ld%ld %2d.%2d %1O.6fH",

i,oldpop[i].chromo[I],oldpop[i].chromo[2],oldpop[i].chromo[3],oldpop[i].chromo[4],
oldpop[i].chromo[5],oldpop[i].chromo[6],oldpop[i).chromo[7),oldpop[i).chromo[8],
oldpop[i].chromo[9],oldpop[i].chromo[10],oldpop[i].chromo[ll],oldpop[i].x[I],
oldpop[i].x[2],oldpop[i].fitness);

fprintf{fpout, "%3d:(%2d. %2d) %2d % ld% ld% ld% ld% ld% ld% ld% ld% ld% ld% ld %2d, %2d
%1O.6t\n",

}

i,newpop[i]. parentl,newpop[i]. parent2,newpop[i] .cross_site,
newpop[i].chromo[I],newpop[i].chromo[2],newpop[i].chromo[3],newpop[i].chromo[4],
newpop[i].chromo[5],newpop[i].chromo[6],newpop[i].chromo[7],newpop[i].chromo[8],
newpop[i].chromo[9],newpop[i] .chromo[I OJ,newpop[i J .chromo[II] ,newpop[i].x [1],
newpop[i].x[2],newpop[iJ.fitness);

fprintf(fpout, " --\n");
fprintf(fpout, "Genemtion I Stats: max=%1O.6f, min=%1O.6f, avg=%1O.6f, sumfit=%10.61\n",max,min,

avg,sumfitness);
fprintf(fpout, "Accumulated Stats: nmutation=%5d. ncross=%5d\n" ,nmutation,ncross);

fprintf(fpout, "---\n \n \n \n \n ");
}

1* ** *1

int uniform(min,max)
float min,max;

}

float urn;
int uprod;
urn = (min + «(max+l) - min)*r1numQ»;
uprod = (int)urn;
return uprod;

float rlnumO
{

float ran_num;
seedl = (seed I *2125) + 1;
if (seed 1 < 0)

seed 1 = seed I + 2147483647 + I;
ran_num = seedl/2147483647.0;
return ran_num;

www.manaraa.com

114

APPENDIXE

TANDEM ALGORITHM SLAVE PROGRAM,

IMPLEMENTATION OF A SQG METHOD,

C SOURCE CODE

www.manaraa.com

115

/* SQG4.C·-- This is the program file for the implementation of a
stochastic quasigradient method to the optimization of
an evaporator assembly system at Ford Refrigeration and
Electronics in Connersville, IN.

*/

Kraig A. Downs
Masters Thesis Work
February 1993

This is the second half of the tandem algorithm. The tandem
algorithm is described and programmed in T ANDEM.c. T ANDEM.c
simply calls GAl.exe and SQG4.exe in order to implement the
tandem application of a genetic algorithm and a SQG method.

This variation of the SQG method uses station configurations
produce by GAl.exe. It then optimizes the number of pallets
for each of these configurations.

This implementation of SQG uses a forward finite difference
equation to estimate the gradient. It also uses a modified
step size.

#include <stdio.h>
#include <stdlib.h>

float rlnumO;
int maxpalsO;
int find_confi~numO;
float secobjjunc_valO; /* uses pml, simnorm.dat */
float secobLfunc_va120; /* uses pm2, simnorm.dat */
float secobj_func_val30; /* uses pm2, simavg.dat */

struct solution
{
int np; /* number of pallets */
int s6; /* station 6 */
int s5; /* station 5 */
int s4; /* station 4 */
int s3; /* station 3 *1
int s2; 1* station 2 */
int sl; 1* station 1 *1
float pm; /* performance measure *1

} csol,tsol; /* current solution, old solution *1

FILE *fpl; 1* output file *1
long seed1; /* random number generator seed *1
float pm; /* performance measure * /
iot pss; /* pallet step size */
int itecnum; 1* the iteration number */
float g1; /* gradient 1 */

www.manaraa.com

116

int htc[2]; 1* how to change *1
int popsize; 1* number of configurations from GA results *1
int gar[80][3]; 1* GA results from TAND.DAT file *1
float pm_array[80][4]; 1* Contains the final perfonnance measure for

float req;
float rp;
float upcl;
float upc2;

each config. Final pm found using SQG method. *1
1* required production mte *1

1* reduction percentage *1
1* unit cost for underproduction *1
1* unit cost for overproduction *1

mainO
{
int i,j,ipc;

if «fp l=fopen("taout.dat", "w"»=NULL)
{

}

puts("ERROR! Unable to open TAOUT.DAT\n\o");
exit(l);

seed 1 = 92383;
req = 1368.0;
rp= 0.85;
ipc = 15; 1* the number of itemtions per configuration *1
upcl = 2.0;
upc2= 0.40;

inicrand..,genO; 1* initializes random number genemtor *1
10ad..,ga_resultsO;

for (i= 1; k=popsize; i++)
{

}

itecnum = 1; 1* initialize itemtion counter *1
fprintf(fpl,"\o\o\o");
fprintf(fpl," »»»»»»»»»»»»»»»»»»»»»»»»»»»\0");
fprintf(fpl," Station configuration # %d\o",i);
fprintf(fpl," «««««««««««««««««««««««««««\0");
pss= 8;
filCcsol(i);
for (j=I; j<=ipc; j++)

{
calculate..,gmdients(csol);
secnexcsolution();
1* write_statsO; *1
itecnum++;
modify _pssO;

if (tsol.pm < csol.pm) set-pm_array(tsol,i);
else secpm_array(csol,i);

sorcby_pmO; 1* sorts the pm_arrayOO in ascending order by pm *1

www.manaraa.com

117

outpucpm_arrayO; /* writes pm_array[JD to a file */
fclose(fpl);
}

filCcsol(index)
int index;

{

1* This function properly fills the current solution csol with
the station configuration and number of pallets.

*/

encode_sc(gar[index] [1]);
csol.np = gar[index][2];
csol.pm = secobLfunc_val(csol);

}

secpm_array(wsol,index)
struct solution wsol;

{

}

int index;
/* This function adds the optimal solution to the pm_arrayDD */

pm_array[index][l] = (find_confi~num(wsol) * 1.0);
pm_array[index][2] = (wsol.np * 1.0);
pm_array[index][3] = (wsol.pm * 1.0);

load~a_resultsO

}

/* This function loads the results from TAND.DAT into the two
dimensional array gar[80][3].

*/

ALE *fpx;
int i;

if «fpx=fopen("tand.dat", "r"»=NULL)
{

}

puts("ERROR! Unable to open TAND.DAT\n\n");
exit(l);

fscanf(fpx, "%d\n" ,&popsize);
for (i=l; k=popsize; i++)

fscanf(fpx, "%d %d\n" ,&gar[i][l],&gar[i][2]);
l~lUse(fpx);

calculate~radients(wsol)

www.manaraa.com

118

struct solution wsol; '* This function detetmines the quasigradients for the number of
pallets decision variable. Note: this function uses a FORWARD
FINITE DIFFERENCE equation to estimate the gradient.

*'
struct solution tempsol;
float x,y;

tempsol.s6=wsol.s6; tempsol.s5=wsol.s5; tempsol.s4=wsol.s4;
tempsol.s3=wsol.s3; tempsol.s2=wsol.s2; tempsol.sl=wsol.sI;
tempsol.np=wsol.np;

'* detetmine gradient direction for number of pallets *'
x = wsol.pm;
if «tempsol.np+pss) > max_pallets(tempsol))

tempsol.np = max_pallets(tempsol) + 1;
else

tempsol.np = tempsol.np + pss;
y = secobLfunc_val(tempsol);
gl = (y - x)'pss;
if «(y - x)'pss) < 0.(0)

htc[I] = 1; 1* set "how to change" to step forward *1
else

htc[l] = -1; 1* set "how to change" to step backward *1
}

encode_sc(config)
int config;

}

1* This function encodes the decimal version of the station
configuration into a binary number.

*'
int temp;
temp = config;
if «temp/32) = 1) { csol.s6 = 1; temp = temp - 32; }
else csol.s6 = 0;
if «temp/I6) = 1) { csol.s5 = 1; temp = temp - 16; }
else csol.s5 = 0;
if «temp'8) = 1) { csol.s4 = 1; temp = temp - 8; }
else csol.s4 = 0;
if «temp/4) = 1) { csol.s3 = 1; temp = temp - 4; }
else csol.s3 = 0;
if «temp/2) = 1) { csol.s2 = 1; temp = temp - 2; }
else csol.s2 = 0;
if «temp/I) = 1) { csol.sI = 1; temp = temp - 1; }
else csol.sl = 0;

www.manaraa.com

119

secnexcsolutionO
/* This function makes the changes to the current solution

vector according to what is in htc[I].
htc[l] ---> 1 up. -I down

*/

save_csoIO; 1* copies csol into tsol */

1* set number of pallets variable for next iteration *1
if (htc[l] > 0)

{
if (max-pallets(csol) < (csol.np+pss»

csol.np = max_pallets(csol);
else

csol.np = csol.np + pss;

else
{

}

if «csol.np-pss).< 0)
csol.np = 0;

else
csol.np = csol.np - pss;

csol.pm = secobLfunc_val(csol); /* set pm of new config */
}

save_csolO

{

}

1* This function saves the current solution for statistics purposes. */

tsol.s6 = csol.s6;
tsol.s5 = csol.s5;
tsol.s4 = csol.s4;
tsol.s3 = csol.s3;
tsol.s2 = csol.s2;
tsol.sl = csol.sl;
tsol.np = csol.np;
tsol.pm = csol.pm;

write_statsO

{

/* This function writes out the necessary statistics to report the
history of the SQG algorithm.

*/

int cfg;
fprintf(fp I. " --\n ");

www.manaraa.com

cfg = find_confi~num(tsol);
fprintf(fp 1, "Itemtion %d\n" ,itecnum);

120

fprintf(fpI," old: %d%d%d%d%d%d, cfg# = %d, np = %d, pm = %t\n",
tsol.s6,tsol.s5,tsol.s4,tsol.s3,tsol.s2,tsol.sl,cfg,tsol.np,
tsol.pm);

fprintf(fp 1," htc[1]=%d,g l=%f,pss=%d\n" ,htc[1],g I,pss);
cfg = find_confi~num(csol);
fprintf(fpl," new: %d%d%d%d%d%d, cfg# = %d, np = %d, pm = %t\n\n",

csol.s6,csol.s5,csol.s4,csol.s3,csol.s2,csol.sI,cfg,csol.np,
csol.pm);

init_mnd~enO
1* This function initializes the mndom number generator *1

{
int i;
float x;
x=O.O;
for (i=I; k=20; i++)

x = x + rlnumO;
}

int rmd_confi~num(wsol)
struct solution wsol;

{
intcf~num;

cf~num = «(wsol.s6)*32)+«wsol.s5)* 16)+«wsol.s4)*8)+«wsol.s3)*4)+
«wsol.s2)*2)+(wsol.sI»;

return cfg:..num;
}

float secobj_func_val(wsol)
struct solution wsol;

1* This function sets the objective function value. It references
a data me containing the parameters so a normal mndom variate
can be genemted.

*1

FILE *fpin;
float mean,sdev,oprate,hrs_pecshift;
float pro<tmte,sum;
int config,pals,rc;;~~.i,mp,cfgnum,num_ops;

oprate = 15.00;
hrs-J>ecshift = 8.0;

mp = max_pallets(wsol);

www.manaraa.com

121

num_ops = wsol.s 1 +wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6;
if «wsol.np > mp)JJ(wsol.np = O)JJ(num_ops = 0»

{
legal = 0; /* illegal or infeasible number of pallets */
prod_rate = I; /* penalty production rate */

}
else

legal = I;
if (legal)

{

}

if «fpin=fopen("simnorm.dat", "r"»=NULL)
{

}

printf("Cannot open SIMNORM.DAT file !!\o\o");
exit(1);

cfgnum = find30nfi!Lnum(wsol);
fscanf(fpin,"%f%f%d%d\o",&mean,&sdev,&config,&pals);
while«config != cfgnum)lI(pals != wsol.np»

fscanf(fpin, "%f%f%d%d\o" ,&mean,&sdev,&config,&pals);
fcIose(fpin);
/* create a normal random variate * /
sum = -6.0;
for (i=l; k=12; i++)

sum = sum + rlnumO;
prod_rate = (sum * sdev) + mean;

if «num_ops = O)II(wsol.np = 0»
{

}

num_ops = 10; /* big penalty for no operator case */
prod_rate = I; /* another addition to the penalty */

pm = (oprate * hrs-J)ecshift * num_ops)/prod_rate;
return pm;
}

float set_obj3unc_ val2(wsol)
struct solution wsol;

{

/* This function sets the objective function value. It references
a data me containing the parameters so a normal random variate
can be generated. This returns the performance measure with
the pm2 definition.

*/

ALE *fpin;
float mean,sdev,oprate,hrs-J)ecshift;
float prod_rate,sum,rr,penalty;
int config.pals,legal,i,mp,cfgnum,num_ops;

oprate = 15.00;
hrs_pecshift = 8.0;

www.manaraa.com

122

mp = mrucpallets(wsol);
num_ops = wsol.sl+wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6;
if «wsol.np > mp)lI(wsol.np = O)II(num_ops == 0»

{
legal = 0; 1* illegal or infeasible number of pallets *1
prod_rate = 1; 1* penalty production rate *1

}
else

legal = 1;
if (legal)

{

}

if «fpin=fopen("simnorm.dat", "r"»=NVLL)
{

}

printf("Cannot open SIMNORM.DAT file !!\n\n");
exit(l);

cfgnum = fiod_confi~num(wsol);
fscanf(fpio, "%f%f%d%d\n" ,&mean,&sdev ,&coofig,&pals);
while«config != cfgnum)lI(pals != wsol.np»

fscanf(fpio,"%f%f%d%d\n",&mean,&sdev,&config,&pals);
fclose(fpin);
1* create a normal random variate *1
sum = -6.0;
for (i=I; k=12; i++)
sum = sum + rlnumO;

prod_rate = (sum * sdev) + mean;

if «num_ops = O)II(wsol.np = 0»
{
num_ops = 10; 1* big penalty for no operator case *1
prod_rate = I; 1* another addition to the penalty *1

} .

rr = prod_rate/req; 1* set requirement ratio *1
if (rr<=l.O) penalty = (upel * (req - prod_rate»/prod_rate;
else penalty = (upe2 * (prod_rate - req»/prod_rate;
pm = (oprate * hrs_pecshift * num_ops)/prod_rate;
pm = pm + penalty;
return pm;
}

float set_obj_func_ val3(wsol)
struct solution wsol;

{

1* This function sets the objective function value. It references
a data file containing the average production rate. This returns
the performance measure with the pm2 definition.

*1

FILE *fpin;
float oprate,hrs_pecshift;

www.manaraa.com

float pro<Crate,rr,penalty;
int config,pals,legal,i,mp,cfgnum,num_ops;

oprate = 15.00;
hrs_per_shift = 8.0;

mp = max_pallets(wsol);

123

num_ops = wsol.sl +wsol.s2+wsol.s3+wsol.s4+wsol.s5+wsol.s6;
if «wsol.np > mp)lI(wsol.np = O)II(num_ops = 0»

{
legal = 0; 1*. illegal or infeasible number of pallets *1
prod_rate = 1; 1* penalty production rate *1

}
else

legal = 1;
if (legal)

{

}

if «fpin=fopen("simavg.dat", "r"»=NVLL)
{

}

printf("Cannot open SIMA VG.DAT file ! !\o\o");
exit(l);

cfgnum = find_confitt-num(wsol);
fscanf(fpin,"%f%d%d\n",&prod_rate,&config,&pals);
while«config != cfgnum)lI(pals != wsol.np»

fscanf(fpin, "%f%d%d\n" ,&prod_rate,&config,&pals);
fclose(fpin);

if «nuncops = O)II(wsol.np = 0»
{

}

num_ops = 10; 1* big penalty for no operator case *1
prod_rate = I; 1* another addition to the penalty *1

rr = prod_rale/req; /* set requirement ratio */
if (rr<=1.0) penalty = (upel * (req - prod_rate»/prod_rate;
else penalty = (upe2 * (prod_rate - req»/prod_rate;
pm = (oprate * hrs_peCshift * num_ops)/prod_rate;
pm = pm + penalty;
return pm;
)

int max-pallets(wsol)
struct solution wsol;

{

1* This function calculate~ UJ;; diaximum number of pallets allowed
for a given configuration number. The absolute maximum number
of pallets is 31.

*1

int xl,x2,i,num_sta_op,laststa,maxpals;

www.manaraa.com

124

num_sta_op = wso1.s6 + wso1.s5 + wso1.s4 + wso1.s3 + wso1.s2 + wso1.s1;
laststa = 0;
laststa = wso1.s1 = 1 ? 1 : laststa;
laststa = wsol.s2 = 1 ? 2 : laststa;
laststa = wsol.s3 = 1 ? 3 : laststa;
laststa = wso1.s4 = 1 ? 4 : laststa;
laststa = wsol.s5 = 1 ? 5 : laststa;
laststa = wso1.s6 = 1 ? 6 : laststa;
x2= 10;
switch(laststa)

{
case 6: xl = 10;

break;
case 5: xl = 8;

break;
case 4: xl =7;

break;
case 3: xl =6;

break;
case 2: xl =4;

break;
case 1: xl = 2;

break;
case 0: xl = I;

break;
}

maxpals = (2*num_sta_op) + xl + x2;
if (maxpals = 32) maxpals = 31;
return maxpals;
}

modify _pssO
1* This function modifies the pallet step size *1

{
floatmpss;
mpss = (rp * pss);
if (mpss < 1.00) mpss=mpss+ 1.0;
pss = (int)mpss; 1* truncates the float to an int *1

}
sorCby-pmO

1* This function sorts pm_arrayOO in ascending order
by performance measure (pm). A simple bubble sort
algorithm is used to sort pm_arrayOO. *1

int done,swaps,i;
float temp_sc,temp_np,temp-pm;

done = 0; 1* not done sorting yet *1
while (done != 1)

{

www.manaraa.com

}
}

swaps=O;
for (i=I; k=(popsize - 1); i++)

{

}

if (pm_array[i+ 1][3] < pm_array[i][3])
{

}

swaps++;
temp_sc = pm_array[i][I];
temp_np = pm_array[i][2];
temp-pm = pm_array[i][3]; .
pm_array[i][I] = pm_array[i+ 1][1];
pm_array[i][2] = pm_array[i+l][2];
pm_array[i][3] = pm_array[i+I][3];
pm_array[i+l][l] = temp_sc;
pm_array[i+l][2] = temp_np;
pm_array[i+I][3] = temp_pm;

if (swaps = 0) done = 1;

125

outpucpm_arrayO

{

1* This function outputs the pm_arrayDD contents into
TAOUT2.DAT. Note that the contents of pm_arraYDD
have been sorted. *1

FILE *fpo2;

int i;
float sumfit;

if {(fpo2=fopen("taout2.dat", "w"»=NULL)
{

}

printf("Cannot open TAOtm.DAT file !!\n\n");
exit(I);

sumfit = 0.0;
-I*for (i=l; k=popsize; i++)*1
for (i=I; k=20; i++)

}

{

}

fprintf(fpo2,"sc = %3.0f, np = %3.0[, pm = %1O.6fu1",
pm_array[i] [1],pm_array[i] [2],pm_array[i] [3]);

sumfit = sumfit + pm_array[i][3];

fprintf(fpo2, "sum of top 20 PMs = % 15.6fu1" ,sumfit);
fclose(fpo2);

float rlnumO 1* random number generator *1
{

www.manaraa.com

}

float ran_Dum;
seedl = (seedl*2l25) + 1;
if (seed 1 < 0)
seedl = seed 1 + 2147483647 + 1;

ran_Dum = seed1l2147483647.0;
return ran_Dum;

126

	1993
	Tandem application of a genetic algorithm and stochastic quasigradient method to the optimization of an assembly system
	Kraig Alan Downs
	Recommended Citation

	Tandem application of a genetic algorithm and stochastic quasigradient method to the optimization of

